Size-dependent phase morphologies in LiFePO4 battery particles
Lithium iron phosphate (LiFePO4) is the prototypical two-phase battery material whose complex patterns of lithium ion intercalation provide a testing ground for theories of electrochemical thermodynamics. Using a depth-averaged (a-b plane) phase-field model of coherent phase separation driven by Far...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2020
|
Online Access: | https://hdl.handle.net/1721.1/126447 |
Summary: | Lithium iron phosphate (LiFePO4) is the prototypical two-phase battery material whose complex patterns of lithium ion intercalation provide a testing ground for theories of electrochemical thermodynamics. Using a depth-averaged (a-b plane) phase-field model of coherent phase separation driven by Faradaic reactions, we reconcile conflicting experimental observations of diamond-like phase patterns in micron-sized platelets with observations of surface-controlled patterns in nanoparticles. Elastic analysis predicts this morphological transition for particles whose a-axis dimension exceeds twice the bulk elastic stripe period. We also simulate a rich variety of non-equilibrium patterns, influenced by size-dependent spinodal points and electro-autocatalytic control of thermodynamic stability. |
---|