SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0

In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementat...

Full description

Bibliographic Details
Main Authors: Kokkola, Harri, Kühn, Thomas, Laakso, Anton, Bergman, Tommi, Lehtinen, Kari E. J., Mielonen, Tero, Arola, Antti, Stadtler, Scarlet, Korhonen, Hannele, Ferrachat, Sylvaine, Lohmann, Ulrike, Neubauer, David, Tegen, Ina, Siegenthaler-Le Drian, Colombe, Schultz, Martin G., Bey, Isabelle, Stier, Philip, Daskalakis, Nikos, Heald, Colette L., Romakkaniemi, Sami
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Format: Article
Language:English
Published: Copernicus GmbH 2020
Online Access:https://hdl.handle.net/1721.1/126621
_version_ 1826207666630819840
author Kokkola, Harri
Kühn, Thomas
Laakso, Anton
Bergman, Tommi
Lehtinen, Kari E. J.
Mielonen, Tero
Arola, Antti
Stadtler, Scarlet
Korhonen, Hannele
Ferrachat, Sylvaine
Lohmann, Ulrike
Neubauer, David
Tegen, Ina
Siegenthaler-Le Drian, Colombe
Schultz, Martin G.
Bey, Isabelle
Stier, Philip
Daskalakis, Nikos
Heald, Colette L.
Romakkaniemi, Sami
author2 Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
author_facet Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Kokkola, Harri
Kühn, Thomas
Laakso, Anton
Bergman, Tommi
Lehtinen, Kari E. J.
Mielonen, Tero
Arola, Antti
Stadtler, Scarlet
Korhonen, Hannele
Ferrachat, Sylvaine
Lohmann, Ulrike
Neubauer, David
Tegen, Ina
Siegenthaler-Le Drian, Colombe
Schultz, Martin G.
Bey, Isabelle
Stier, Philip
Daskalakis, Nikos
Heald, Colette L.
Romakkaniemi, Sami
author_sort Kokkola, Harri
collection MIT
description In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation within ECHAM-HAMMOZ is evaluated against observations of aerosol optical properties, aerosol mass, and size distributions, comparing also to the skill of the M7 implementation. The largest differences between the implementation of SALSA2.0 and M7 are in the methods used for calculating microphysical processes, i.e., nucleation, condensation, coagulation, and hydration. These differences in the microphysics are reflected in the results so that the largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt. Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol, the ability of M7 to simulate the volcano plume was improved by modifying the mode widths, decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2 similar to what was observed after the Mt. Pinatubo eruption. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g., size-dependent emissions for aerosol species and size-resolved wet deposition.
first_indexed 2024-09-23T13:53:04Z
format Article
id mit-1721.1/126621
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:53:04Z
publishDate 2020
publisher Copernicus GmbH
record_format dspace
spelling mit-1721.1/1266212022-10-01T17:45:00Z SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0 Kokkola, Harri Kühn, Thomas Laakso, Anton Bergman, Tommi Lehtinen, Kari E. J. Mielonen, Tero Arola, Antti Stadtler, Scarlet Korhonen, Hannele Ferrachat, Sylvaine Lohmann, Ulrike Neubauer, David Tegen, Ina Siegenthaler-Le Drian, Colombe Schultz, Martin G. Bey, Isabelle Stier, Philip Daskalakis, Nikos Heald, Colette L. Romakkaniemi, Sami Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation within ECHAM-HAMMOZ is evaluated against observations of aerosol optical properties, aerosol mass, and size distributions, comparing also to the skill of the M7 implementation. The largest differences between the implementation of SALSA2.0 and M7 are in the methods used for calculating microphysical processes, i.e., nucleation, condensation, coagulation, and hydration. These differences in the microphysics are reflected in the results so that the largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt. Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol, the ability of M7 to simulate the volcano plume was improved by modifying the mode widths, decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2 similar to what was observed after the Mt. Pinatubo eruption. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g., size-dependent emissions for aerosol species and size-resolved wet deposition. NOAA (Grant NA17RJ1231) National Science Foundation (Grant ATM-0002035, ATM-0002698 and ATM04-01611) 2020-08-17T16:05:43Z 2020-08-17T16:05:43Z 2018-09 2018-08 2020-05-27T17:30:37Z Article http://purl.org/eprint/type/JournalArticle 1991-9603 https://hdl.handle.net/1721.1/126621 Kokkola, Harri et al. "SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0." Geoscientific Model Development 11, 9 (September 2018): 3833–3863 © 2018 Author(s) en http://dx.doi.org/10.5194/gmd-11-3833-2018 Geoscientific Model Development Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/ application/pdf Copernicus GmbH Copernicus Publications
spellingShingle Kokkola, Harri
Kühn, Thomas
Laakso, Anton
Bergman, Tommi
Lehtinen, Kari E. J.
Mielonen, Tero
Arola, Antti
Stadtler, Scarlet
Korhonen, Hannele
Ferrachat, Sylvaine
Lohmann, Ulrike
Neubauer, David
Tegen, Ina
Siegenthaler-Le Drian, Colombe
Schultz, Martin G.
Bey, Isabelle
Stier, Philip
Daskalakis, Nikos
Heald, Colette L.
Romakkaniemi, Sami
SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title_full SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title_fullStr SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title_full_unstemmed SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title_short SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0
title_sort salsa2 0 the sectional aerosol module of the aerosol chemistry climate model echam6 3 0 ham2 3 moz1 0
url https://hdl.handle.net/1721.1/126621
work_keys_str_mv AT kokkolaharri salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT kuhnthomas salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT laaksoanton salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT bergmantommi salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT lehtinenkariej salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT mielonentero salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT arolaantti salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT stadtlerscarlet salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT korhonenhannele salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT ferrachatsylvaine salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT lohmannulrike salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT neubauerdavid salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT tegenina salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT siegenthalerledriancolombe salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT schultzmarting salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT beyisabelle salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT stierphilip salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT daskalakisnikos salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT healdcolettel salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10
AT romakkaniemisami salsa20thesectionalaerosolmoduleoftheaerosolchemistryclimatemodelecham630ham23moz10