Shoeboxer: An algorithm for abstracted rapid multi-zone urban building energy model generation and simulation

In this paper the authors present an algorithm that abstracts an arbitrarily shaped set of building volumes into a group of simplified ‘shoebox’ building energy models. It is shown that for generic perimeter and core floorplans the algorithm provides a faster but comparably accurate simulation resul...

Full description

Bibliographic Details
Main Author: Reinhart, Christoph
Other Authors: Massachusetts Institute of Technology. Department of Architecture
Format: Article
Language:English
Published: Elsevier BV 2020
Online Access:https://hdl.handle.net/1721.1/126627
Description
Summary:In this paper the authors present an algorithm that abstracts an arbitrarily shaped set of building volumes into a group of simplified ‘shoebox’ building energy models. It is shown that for generic perimeter and core floorplans the algorithm provides a faster but comparably accurate simulation results of annual load profiles vis-à-vis multi-zone thermal models generated according to ASHRAE90.1 Appendix G guidelines. Envisioned applications range from rapid thermal model generation for urban building energy modelling to schematic architectural design. Following a description of the algorithm, its ability to produce load profiles for a mixed-use neighborhood of 121 fully conditioned buildings for a variety of climates is demonstrated. The comparison yields relative mean square errors in simulated annual building energy use intensity of five to 10 percent compared to ASHRAE 90.1 compliant building energy models while reducing simulation times by a factor of 296.