Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors

We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual...

Full description

Bibliographic Details
Main Authors: Dalca, Adrian Vasile, Sridharan, Ramesh, Cloonan, Lisa, Fitzpatrick, Kaitlin M., Kanakis, Allison, Furie, Karen L., Rosand, Jonathan, Wu, Ona, Sabuncu, Mert, Rost, Natalia S., Golland, Polina
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Book
Language:English
Published: Springer International Publishing 2020
Online Access:https://hdl.handle.net/1721.1/126637
_version_ 1826196574496096256
author Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
author_sort Dalca, Adrian Vasile
collection MIT
description We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
first_indexed 2024-09-23T10:29:16Z
format Book
id mit-1721.1/126637
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T10:29:16Z
publishDate 2020
publisher Springer International Publishing
record_format dspace
spelling mit-1721.1/1266372022-09-27T09:46:52Z Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors Dalca, Adrian Vasile Sridharan, Ramesh Cloonan, Lisa Fitzpatrick, Kaitlin M. Kanakis, Allison Furie, Karen L. Rosand, Jonathan Wu, Ona Sabuncu, Mert Rost, Natalia S. Golland, Polina Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort. NIH (Grants 1K25EB013649-01, NAC-P41EB015902, U54-EB005149, NS082285, K23NS064052 and U01NS069208) 2020-08-17T21:19:51Z 2020-08-17T21:19:51Z 2014 2014-09 2019-05-29T17:47:45Z Book http://purl.org/eprint/type/ConferencePaper 9783319104690 9783319104706 0302-9743 1611-3349 https://hdl.handle.net/1721.1/126637 Dalca, Adrian Vasile. et al. "Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors." International Conference on Medical Image Computing and Computer-Assisted Intervention, September 2014, Springer International Publishing, 2014. © 2014 Springer International Publishing en http://dx.doi.org/10.1007/978-3-319-10470-6_96 International Conference on Medical Image Computing and Computer-Assisted Intervention Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer International Publishing PMC
spellingShingle Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_full Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_fullStr Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_full_unstemmed Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_short Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_sort segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors
url https://hdl.handle.net/1721.1/126637
work_keys_str_mv AT dalcaadrianvasile segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT sridharanramesh segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT cloonanlisa segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT fitzpatrickkaitlinm segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT kanakisallison segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT furiekarenl segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT rosandjonathan segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT wuona segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT sabuncumert segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT rostnatalias segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT gollandpolina segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors