Entropic optimal transport is maximum-likelihood deconvolution

We give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for...

Full description

Bibliographic Details
Main Authors: Rigollet, Philippe, Weed, Jonathan
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Elsevier BV 2020
Online Access:https://hdl.handle.net/1721.1/126692
_version_ 1811083480927305728
author Rigollet, Philippe
Weed, Jonathan
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Rigollet, Philippe
Weed, Jonathan
author_sort Rigollet, Philippe
collection MIT
description We give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for the wide adoption of these tools in the machine learning community.
first_indexed 2024-09-23T12:33:45Z
format Article
id mit-1721.1/126692
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:33:45Z
publishDate 2020
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1266922022-09-28T08:39:10Z Entropic optimal transport is maximum-likelihood deconvolution Rigollet, Philippe Weed, Jonathan Massachusetts Institute of Technology. Department of Mathematics We give a statistical interpretation of entropic optimal transport by showing that performing maximum-likelihood estimation for Gaussian deconvolution corresponds to calculating a projection with respect to the entropic optimal transport distance. This structural result gives theoretical support for the wide adoption of these tools in the machine learning community. 2020-08-20T00:59:20Z 2020-08-20T00:59:20Z 2018-11 2019-11-19T17:33:20Z Article http://purl.org/eprint/type/JournalArticle 1631-073X https://hdl.handle.net/1721.1/126692 Rigollet, Philippe and Jonathan Weed. "Entropic optimal transport is maximum-likelihood deconvolution." Comptes Rendus Mathematique 356, 11-12 (November 2018): 1228-1235 © 2018 Académie des sciences en http://dx.doi.org/10.1016/j.crma.2018.10.010 Comptes Rendus Mathematique Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV arXiv
spellingShingle Rigollet, Philippe
Weed, Jonathan
Entropic optimal transport is maximum-likelihood deconvolution
title Entropic optimal transport is maximum-likelihood deconvolution
title_full Entropic optimal transport is maximum-likelihood deconvolution
title_fullStr Entropic optimal transport is maximum-likelihood deconvolution
title_full_unstemmed Entropic optimal transport is maximum-likelihood deconvolution
title_short Entropic optimal transport is maximum-likelihood deconvolution
title_sort entropic optimal transport is maximum likelihood deconvolution
url https://hdl.handle.net/1721.1/126692
work_keys_str_mv AT rigolletphilippe entropicoptimaltransportismaximumlikelihooddeconvolution
AT weedjonathan entropicoptimaltransportismaximumlikelihooddeconvolution