18.906 Algebraic Topology II, Spring 2006
In this second term of Algebraic Topology, the topics covered include fibrations, homotopy groups, the Hurewicz theorem, vector bundles, characteristic classes, cobordism, and possible further topics at the discretion of the instructor.
Main Author: | |
---|---|
Language: | en-US |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/1721.1/126831 |
_version_ | 1811072554175037440 |
---|---|
author | Behrens, Mark |
author_facet | Behrens, Mark |
author_sort | Behrens, Mark |
collection | MIT |
description | In this second term of Algebraic Topology, the topics covered include fibrations, homotopy groups, the Hurewicz theorem, vector bundles, characteristic classes, cobordism, and possible further topics at the discretion of the instructor. |
first_indexed | 2024-09-23T09:07:46Z |
id | mit-1721.1/126831 |
institution | Massachusetts Institute of Technology |
language | en-US |
last_indexed | 2024-09-23T09:07:46Z |
publishDate | 2020 |
record_format | dspace |
spelling | mit-1721.1/1268312020-08-28T03:38:53Z 18.906 Algebraic Topology II, Spring 2006 Algebraic Topology II Behrens, Mark Fibrations homotopy groups the Hurewicz theorem vector bundles characteristic classes cobordism 270105 Topology and Foundations In this second term of Algebraic Topology, the topics covered include fibrations, homotopy groups, the Hurewicz theorem, vector bundles, characteristic classes, cobordism, and possible further topics at the discretion of the instructor. 2020-08-27T20:15:35Z 2020-08-27T20:15:35Z 2006-06 2020-08-27T20:15:42Z 18.906-Spring2006 18.906 IMSCP-MD5-846533571e07f9e97edd3545e96e1607 https://hdl.handle.net/1721.1/126831 en-US This site (c) Massachusetts Institute of Technology 2020. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license") unless otherwise noted. The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. Attribution-NonCommercial-ShareAlike 3.0 Unported http://creativecommons.org/licenses/by-nc-sa/3.0/ text/plain text/html image/jpeg image/jpeg text/html application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf text/html application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf text/html application/pdf application/pdf text/html text/html application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/html image/png image/png image/png image/png image/gif image/png image/png image/png image/jpeg image/gif image/png image/png image/png image/gif image/png image/png image/png image/png image/png image/png image/gif image/png image/png image/gif image/gif image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/jpeg image/gif image/png image/jpeg image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/png image/png image/jpeg image/gif image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/png image/gif application/octet-stream image/gif image/gif image/png image/gif image/gif image/gif image/png image/png application/octet-stream image/gif image/gif image/gif image/gif image/png image/gif image/gif application/octet-stream image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png application/rdf+xml; charset=utf-8 text/html image/png image/png image/jpeg image/png image/png image/png image/png image/png text/html text/html Spring 2006 |
spellingShingle | Fibrations homotopy groups the Hurewicz theorem vector bundles characteristic classes cobordism 270105 Topology and Foundations Behrens, Mark 18.906 Algebraic Topology II, Spring 2006 |
title | 18.906 Algebraic Topology II, Spring 2006 |
title_full | 18.906 Algebraic Topology II, Spring 2006 |
title_fullStr | 18.906 Algebraic Topology II, Spring 2006 |
title_full_unstemmed | 18.906 Algebraic Topology II, Spring 2006 |
title_short | 18.906 Algebraic Topology II, Spring 2006 |
title_sort | 18 906 algebraic topology ii spring 2006 |
topic | Fibrations homotopy groups the Hurewicz theorem vector bundles characteristic classes cobordism 270105 Topology and Foundations |
url | https://hdl.handle.net/1721.1/126831 |
work_keys_str_mv | AT behrensmark 18906algebraictopologyiispring2006 AT behrensmark algebraictopologyii |