Holographic order from modular chaos

We argue for an exponential bound characterizing the chaotic properties of modular Hamiltonian flow of QFT subsystems. In holographic theories, maximal modular chaos is reflected in the local Poincare symmetry about a Ryu-Takayanagi surface. Generators of null deformations of the bulk extremal surfa...

Full description

Bibliographic Details
Main Authors: de Boer, Jan, Lamprou, Lampros
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2020
Online Access:https://hdl.handle.net/1721.1/126844
_version_ 1811071842330345472
author de Boer, Jan
Lamprou, Lampros
author2 Massachusetts Institute of Technology. Center for Theoretical Physics
author_facet Massachusetts Institute of Technology. Center for Theoretical Physics
de Boer, Jan
Lamprou, Lampros
author_sort de Boer, Jan
collection MIT
description We argue for an exponential bound characterizing the chaotic properties of modular Hamiltonian flow of QFT subsystems. In holographic theories, maximal modular chaos is reflected in the local Poincare symmetry about a Ryu-Takayanagi surface. Generators of null deformations of the bulk extremal surface map to modular scrambling modes — positive CFT operators saturating the bound — and their algebra probes the bulk Riemann curvature, clarifying the modular Berry curvature proposal of arXiv:1903.04493. ©2020
first_indexed 2024-09-23T08:56:34Z
format Article
id mit-1721.1/126844
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T08:56:34Z
publishDate 2020
publisher Springer Berlin Heidelberg
record_format dspace
spelling mit-1721.1/1268442022-09-26T09:23:48Z Holographic order from modular chaos de Boer, Jan Lamprou, Lampros Massachusetts Institute of Technology. Center for Theoretical Physics We argue for an exponential bound characterizing the chaotic properties of modular Hamiltonian flow of QFT subsystems. In holographic theories, maximal modular chaos is reflected in the local Poincare symmetry about a Ryu-Takayanagi surface. Generators of null deformations of the bulk extremal surface map to modular scrambling modes — positive CFT operators saturating the bound — and their algebra probes the bulk Riemann curvature, clarifying the modular Berry curvature proposal of arXiv:1903.04493. ©2020 Pappalardo Fellowship European Research Council - European Unions 7th Framework Programme (FP7/2007-2013) ERC Grant (ADG 834878) 2020-08-28T20:43:11Z 2020-08-28T20:43:11Z 2020-06 2020-03 2020-06-26T13:25:03Z Article http://purl.org/eprint/type/JournalArticle 1029-8479 https://hdl.handle.net/1721.1/126844 de Boer, Jan and Lampros Lamprou, "Holographic order from modular chaos." Journal of High Energy Physics 2020, 6 (June 2020): no. 24 doi. 10.1007/JHEP06(2020)024 ©2020 Authors en https://dx.doi.org/10.1007/JHEP06(2020)024 Journal of High Energy Physics Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Springer Berlin Heidelberg Springer Berlin Heidelberg
spellingShingle de Boer, Jan
Lamprou, Lampros
Holographic order from modular chaos
title Holographic order from modular chaos
title_full Holographic order from modular chaos
title_fullStr Holographic order from modular chaos
title_full_unstemmed Holographic order from modular chaos
title_short Holographic order from modular chaos
title_sort holographic order from modular chaos
url https://hdl.handle.net/1721.1/126844
work_keys_str_mv AT deboerjan holographicorderfrommodularchaos
AT lamproulampros holographicorderfrommodularchaos