Fast magneto-ionic switching of interface anisotropy using yttria-stabilized zirconia gate oxide

© 2020 American Chemical Society. Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of ma...

Full description

Bibliographic Details
Main Authors: Tan, Aik Jun, Huang, Mantao, Beach, Geoffrey Stephen
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2020
Online Access:https://hdl.handle.net/1721.1/127206
Description
Summary:© 2020 American Chemical Society. Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, tsw ∼100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (>103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new low-power computing scheme based on magneto-ionics.