Deep neural networks for choice analysis: Extracting complete economic information for interpretation
While deep neural networks (DNNs) have been increasingly applied to choice analysis showing high predictive power, it is unclear to what extent researchers can interpret economic information from DNNs. This paper demonstrates that DNNs can provide economic information as complete as classical discre...
Hlavní autoři: | Wang, Shenhao, Wang, Qingyi, Zhao, Jinhua |
---|---|
Další autoři: | Massachusetts Institute of Technology. Department of Urban Studies and Planning |
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier BV
2020
|
On-line přístup: | https://hdl.handle.net/1721.1/127230 |
Podobné jednotky
-
Multitask learning deep neural networks to combine revealed and stated preference data
Autor: Wang, Shenhao, a další
Vydáno: (2020) -
Deep neural networks for choice analysis
Autor: Wang, Shenhao.
Vydáno: (2021) -
Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions
Autor: Wang, Shenhao, a další
Vydáno: (2021) -
Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks
Autor: Wang, Shenhao, a další
Vydáno: (2022) -
Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models
Autor: Zheng, Yunhan, a další
Vydáno: (2022)