Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscr...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
American Association for the Advancement of Science (AAAS)
2020
|
Online Access: | https://hdl.handle.net/1721.1/127819 |
_version_ | 1826216386920185856 |
---|---|
author | Chen, Ke Song, Bai Ravichandran, Navaneetha K. Zheng, Qiye Chen, Xi Lee, Hwijong Sun, Haoran Li, Sheng Udalamatta Gamage, Geethal Amila Gamage Tian, Fei Ding, Zhiwei Song, Qichen Rai, Akash Wu, Hanlin Koirala, Pawan Schmidt, Aaron J Watanabe, Kenji Lv, Bing Ren, Zhifeng Shi, Li Cahill, David G. Taniguchi, Takashi Broido, David Chen, Gang |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Chen, Ke Song, Bai Ravichandran, Navaneetha K. Zheng, Qiye Chen, Xi Lee, Hwijong Sun, Haoran Li, Sheng Udalamatta Gamage, Geethal Amila Gamage Tian, Fei Ding, Zhiwei Song, Qichen Rai, Akash Wu, Hanlin Koirala, Pawan Schmidt, Aaron J Watanabe, Kenji Lv, Bing Ren, Zhifeng Shi, Li Cahill, David G. Taniguchi, Takashi Broido, David Chen, Gang |
author_sort | Chen, Ke |
collection | MIT |
description | Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscript 10]B or [superscript 11]B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications. |
first_indexed | 2024-09-23T16:46:30Z |
format | Article |
id | mit-1721.1/127819 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T16:46:30Z |
publishDate | 2020 |
publisher | American Association for the Advancement of Science (AAAS) |
record_format | dspace |
spelling | mit-1721.1/1278192022-10-03T08:13:56Z Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride Chen, Ke Song, Bai Ravichandran, Navaneetha K. Zheng, Qiye Chen, Xi Lee, Hwijong Sun, Haoran Li, Sheng Udalamatta Gamage, Geethal Amila Gamage Tian, Fei Ding, Zhiwei Song, Qichen Rai, Akash Wu, Hanlin Koirala, Pawan Schmidt, Aaron J Watanabe, Kenji Lv, Bing Ren, Zhifeng Shi, Li Cahill, David G. Taniguchi, Takashi Broido, David Chen, Gang Massachusetts Institute of Technology. Department of Mechanical Engineering Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscript 10]B or [superscript 11]B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications. Office of Naval Research (Grant N00014-16-1-2436) 2020-10-06T21:48:52Z 2020-10-06T21:48:52Z 2020-01 2019-09 Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 https://hdl.handle.net/1721.1/127819 Chen, Ke et al. "Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride." Science 367, 6477 (January 2020): 555-559 © 2020 The Authors http://dx.doi.org/10.1126/science.aaz6149 Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science (AAAS) Prof. Gang Chen |
spellingShingle | Chen, Ke Song, Bai Ravichandran, Navaneetha K. Zheng, Qiye Chen, Xi Lee, Hwijong Sun, Haoran Li, Sheng Udalamatta Gamage, Geethal Amila Gamage Tian, Fei Ding, Zhiwei Song, Qichen Rai, Akash Wu, Hanlin Koirala, Pawan Schmidt, Aaron J Watanabe, Kenji Lv, Bing Ren, Zhifeng Shi, Li Cahill, David G. Taniguchi, Takashi Broido, David Chen, Gang Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title | Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title_full | Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title_fullStr | Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title_full_unstemmed | Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title_short | Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride |
title_sort | ultrahigh thermal conductivity in isotope enriched cubic boron nitride |
url | https://hdl.handle.net/1721.1/127819 |
work_keys_str_mv | AT chenke ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT songbai ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT ravichandrannavaneethak ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT zhengqiye ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT chenxi ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT leehwijong ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT sunhaoran ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT lisheng ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT udalamattagamagegeethalamilagamage ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT tianfei ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT dingzhiwei ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT songqichen ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT raiakash ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT wuhanlin ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT koiralapawan ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT schmidtaaronj ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT watanabekenji ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT lvbing ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT renzhifeng ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT shili ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT cahilldavidg ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT taniguchitakashi ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT broidodavid ultrahighthermalconductivityinisotopeenrichedcubicboronnitride AT chengang ultrahighthermalconductivityinisotopeenrichedcubicboronnitride |