Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscr...

Full description

Bibliographic Details
Main Authors: Chen, Ke, Song, Bai, Ravichandran, Navaneetha K., Zheng, Qiye, Chen, Xi, Lee, Hwijong, Sun, Haoran, Li, Sheng, Udalamatta Gamage, Geethal Amila Gamage, Tian, Fei, Ding, Zhiwei, Song, Qichen, Rai, Akash, Wu, Hanlin, Koirala, Pawan, Schmidt, Aaron J, Watanabe, Kenji, Lv, Bing, Ren, Zhifeng, Shi, Li, Cahill, David G., Taniguchi, Takashi, Broido, David, Chen, Gang
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Published: American Association for the Advancement of Science (AAAS) 2020
Online Access:https://hdl.handle.net/1721.1/127819
_version_ 1811096614811467776
author Chen, Ke
Song, Bai
Ravichandran, Navaneetha K.
Zheng, Qiye
Chen, Xi
Lee, Hwijong
Sun, Haoran
Li, Sheng
Udalamatta Gamage, Geethal Amila Gamage
Tian, Fei
Ding, Zhiwei
Song, Qichen
Rai, Akash
Wu, Hanlin
Koirala, Pawan
Schmidt, Aaron J
Watanabe, Kenji
Lv, Bing
Ren, Zhifeng
Shi, Li
Cahill, David G.
Taniguchi, Takashi
Broido, David
Chen, Gang
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Chen, Ke
Song, Bai
Ravichandran, Navaneetha K.
Zheng, Qiye
Chen, Xi
Lee, Hwijong
Sun, Haoran
Li, Sheng
Udalamatta Gamage, Geethal Amila Gamage
Tian, Fei
Ding, Zhiwei
Song, Qichen
Rai, Akash
Wu, Hanlin
Koirala, Pawan
Schmidt, Aaron J
Watanabe, Kenji
Lv, Bing
Ren, Zhifeng
Shi, Li
Cahill, David G.
Taniguchi, Takashi
Broido, David
Chen, Gang
author_sort Chen, Ke
collection MIT
description Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscript 10]B or [superscript 11]B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.
first_indexed 2024-09-23T16:46:30Z
format Article
id mit-1721.1/127819
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T16:46:30Z
publishDate 2020
publisher American Association for the Advancement of Science (AAAS)
record_format dspace
spelling mit-1721.1/1278192022-10-03T08:13:56Z Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride Chen, Ke Song, Bai Ravichandran, Navaneetha K. Zheng, Qiye Chen, Xi Lee, Hwijong Sun, Haoran Li, Sheng Udalamatta Gamage, Geethal Amila Gamage Tian, Fei Ding, Zhiwei Song, Qichen Rai, Akash Wu, Hanlin Koirala, Pawan Schmidt, Aaron J Watanabe, Kenji Lv, Bing Ren, Zhifeng Shi, Li Cahill, David G. Taniguchi, Takashi Broido, David Chen, Gang Massachusetts Institute of Technology. Department of Mechanical Engineering Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched [superscript 10]B or [superscript 11]B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications. Office of Naval Research (Grant N00014-16-1-2436) 2020-10-06T21:48:52Z 2020-10-06T21:48:52Z 2020-01 2019-09 Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 https://hdl.handle.net/1721.1/127819 Chen, Ke et al. "Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride." Science 367, 6477 (January 2020): 555-559 © 2020 The Authors http://dx.doi.org/10.1126/science.aaz6149 Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science (AAAS) Prof. Gang Chen
spellingShingle Chen, Ke
Song, Bai
Ravichandran, Navaneetha K.
Zheng, Qiye
Chen, Xi
Lee, Hwijong
Sun, Haoran
Li, Sheng
Udalamatta Gamage, Geethal Amila Gamage
Tian, Fei
Ding, Zhiwei
Song, Qichen
Rai, Akash
Wu, Hanlin
Koirala, Pawan
Schmidt, Aaron J
Watanabe, Kenji
Lv, Bing
Ren, Zhifeng
Shi, Li
Cahill, David G.
Taniguchi, Takashi
Broido, David
Chen, Gang
Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title_full Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title_fullStr Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title_full_unstemmed Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title_short Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride
title_sort ultrahigh thermal conductivity in isotope enriched cubic boron nitride
url https://hdl.handle.net/1721.1/127819
work_keys_str_mv AT chenke ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT songbai ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT ravichandrannavaneethak ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT zhengqiye ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT chenxi ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT leehwijong ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT sunhaoran ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT lisheng ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT udalamattagamagegeethalamilagamage ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT tianfei ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT dingzhiwei ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT songqichen ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT raiakash ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT wuhanlin ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT koiralapawan ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT schmidtaaronj ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT watanabekenji ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT lvbing ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT renzhifeng ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT shili ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT cahilldavidg ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT taniguchitakashi ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT broidodavid ultrahighthermalconductivityinisotopeenrichedcubicboronnitride
AT chengang ultrahighthermalconductivityinisotopeenrichedcubicboronnitride