Regrasping by Fixtureless Fixturing

This paper presents a fixturing strategy for re-grasping that does not require a physical fixture. To regrasp an object in a gripper, a robot pushes the object against external contact/s in the environment such that the external contact keeps the object stationary while the fingers slide over the ob...

Full description

Bibliographic Details
Main Authors: Chavan Dafle, Nikhil Narsingh, Rodriguez Garcia, Alberto
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE) 2020
Online Access:https://hdl.handle.net/1721.1/128620
Description
Summary:This paper presents a fixturing strategy for re-grasping that does not require a physical fixture. To regrasp an object in a gripper, a robot pushes the object against external contact/s in the environment such that the external contact keeps the object stationary while the fingers slide over the object. We call this manipulation technique fixtureless fixturing. Exploiting the mechanics of pushing, we characterize a convex polyhedral set of pushes that results in fixtureless fixturing. These pushes are robust against uncertainty in the object inertia, grasping force, and the friction at the contacts. We propose a sampling-based planner that uses the sets of robust pushes to rapidly build a tree of reachable grasps. A path in this tree is a pushing strategy, possibly involving pushes from different sides, to regrasp the object. We demonstrate the experimental validity and robustness of the proposed manipulation technique with different regrasp examples on a manipulation platform. Such fast and flexible regrasp planner facilitates versatile and flexible automation solutions.