Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory Planning for Automated Urban Driving

When driving in urban environments, an autonomous vehicle must account for the interaction with other traffic participants. It must reason about their future behavior, how its actions affect their future behavior, and potentially consider multiple motion hypothesis. In this paper we introduce a meth...

Full description

Bibliographic Details
Main Authors: Zhou, Bingyu, Schwarting, Wilko, Rus, Daniela L, Alonso-Mora, Javier
Other Authors: MIT Schwarzmann College of Computing
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE) 2020
Online Access:https://hdl.handle.net/1721.1/128883
Description
Summary:When driving in urban environments, an autonomous vehicle must account for the interaction with other traffic participants. It must reason about their future behavior, how its actions affect their future behavior, and potentially consider multiple motion hypothesis. In this paper we introduce a method for joint behavior estimation and trajectory planning that models interaction and multi-policy decision-making. The method leverages Partially Observable Markov Decision Processes to estimate the behavior of other traffic participants given the planned trajectory for the ego-vehicle, and Receding-Horizon Control for generating safe trajectories for the ego-vehicle. To achieve safe navigation we introduce chance constraints over multiple motion policies in the receding-horizon planner. These constraints account for uncertainty over the behavior of other traffic participants. The method is capable of running in real-time and we show its performance and good scalability in simulated multi-vehicle intersection scenarios.