First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs
The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the lon...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Elsevier BV
2021
|
Online Access: | https://hdl.handle.net/1721.1/129073 |
_version_ | 1811069194053091328 |
---|---|
author | Momper, Lily M. Hu, Eileen Moore, Kelsey Reed Skoog, Emilie J. Tyler, Madeline Evans, Alexander J. Bosak, Tanja |
author2 | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences |
author_facet | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Momper, Lily M. Hu, Eileen Moore, Kelsey Reed Skoog, Emilie J. Tyler, Madeline Evans, Alexander J. Bosak, Tanja |
author_sort | Momper, Lily M. |
collection | MIT |
description | The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e., the Archean and the Proterozoic. To better understand the metabolic versatility and physiological properties of these organisms, we examined publicly available genomes of cyanobacteria from modern terrestrial hydrothermal systems and a newly sequenced genome of a cyanobacterium isolated from conical and ridged microbialites that grow in occasionally sulfidic hydrothermal springs in Yellowstone National Park, USA. Phylogenomic analyses reveal that cyanobacteria from globally distributed terrestrial and shallow marine hydrothermal systems form a monophyletic clade within the Cyanobacteria phylum. Comparative genomics of this clade reveals the genetic capacity for oxygenic photosynthesis that uses photosystems I and II, and anoxygenic photosynthesis that uses a putative sulfide quinone reductase to oxidize sulfide and bypass photosystem II. Surprisingly large proportions of the newly sequenced genome from Yellowstone National Park are also dedicated to secondary metabolite production (15.1–15.6%), of which ∼6% can be attributed to antibiotic production and resistance genes. All this may be advantageous to benthic, mat-forming photosynthesizers that have to compete for light and nutrients in sporadically or permanently sulfidic environments, and may have also improved the tolerance of ancient counterparts of these cyanobacteria to sulfidic conditions in benthic communities that colonized the coastal margins in the Archean and the Proterozoic. |
first_indexed | 2024-09-23T08:07:12Z |
format | Article |
id | mit-1721.1/129073 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T08:07:12Z |
publishDate | 2021 |
publisher | Elsevier BV |
record_format | dspace |
spelling | mit-1721.1/1290732022-09-30T07:40:55Z First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs Metabolic versatility in a modern lineage of cyanobacteria from terrestrial hot springs Momper, Lily M. Hu, Eileen Moore, Kelsey Reed Skoog, Emilie J. Tyler, Madeline Evans, Alexander J. Bosak, Tanja Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e., the Archean and the Proterozoic. To better understand the metabolic versatility and physiological properties of these organisms, we examined publicly available genomes of cyanobacteria from modern terrestrial hydrothermal systems and a newly sequenced genome of a cyanobacterium isolated from conical and ridged microbialites that grow in occasionally sulfidic hydrothermal springs in Yellowstone National Park, USA. Phylogenomic analyses reveal that cyanobacteria from globally distributed terrestrial and shallow marine hydrothermal systems form a monophyletic clade within the Cyanobacteria phylum. Comparative genomics of this clade reveals the genetic capacity for oxygenic photosynthesis that uses photosystems I and II, and anoxygenic photosynthesis that uses a putative sulfide quinone reductase to oxidize sulfide and bypass photosystem II. Surprisingly large proportions of the newly sequenced genome from Yellowstone National Park are also dedicated to secondary metabolite production (15.1–15.6%), of which ∼6% can be attributed to antibiotic production and resistance genes. All this may be advantageous to benthic, mat-forming photosynthesizers that have to compete for light and nutrients in sporadically or permanently sulfidic environments, and may have also improved the tolerance of ancient counterparts of these cyanobacteria to sulfidic conditions in benthic communities that colonized the coastal margins in the Archean and the Proterozoic. 2021-01-06T16:31:08Z 2021-01-06T16:31:08Z 2019-08 2019-05 2020-08-24T17:26:36Z Article http://purl.org/eprint/type/JournalArticle 0891-5849 https://hdl.handle.net/1721.1/129073 Momper, Lily et al. "Metabolic versatility in a modern lineage of cyanobacteria from terrestrial hot springs." Free Radical Biology and Medicine 140 (August 2019): 224-232 © 2019 Elsevier Inc. en http://dx.doi.org/10.1016/j.freeradbiomed.2019.05.036 Free Radical Biology and Medicine Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV Prof. Bosak via Chris Sherratt |
spellingShingle | Momper, Lily M. Hu, Eileen Moore, Kelsey Reed Skoog, Emilie J. Tyler, Madeline Evans, Alexander J. Bosak, Tanja First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title | First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title_full | First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title_fullStr | First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title_full_unstemmed | First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title_short | First genomic description of the novel cyanobacterial family 'Candidatus curcubocaldaceae,' 1 inhabitants of global hydrothermal springs |
title_sort | first genomic description of the novel cyanobacterial family candidatus curcubocaldaceae 1 inhabitants of global hydrothermal springs |
url | https://hdl.handle.net/1721.1/129073 |
work_keys_str_mv | AT momperlilym firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT hueileen firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT moorekelseyreed firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT skoogemiliej firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT tylermadeline firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT evansalexanderj firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT bosaktanja firstgenomicdescriptionofthenovelcyanobacterialfamilycandidatuscurcubocaldaceae1inhabitantsofglobalhydrothermalsprings AT momperlilym metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT hueileen metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT moorekelseyreed metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT skoogemiliej metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT tylermadeline metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT evansalexanderj metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings AT bosaktanja metabolicversatilityinamodernlineageofcyanobacteriafromterrestrialhotsprings |