Deep OCT Angiography Image Generation for Motion Artifact Suppression

Part of the Informatik aktuell book series (INFORMAT)

Bibliographic Details
Main Authors: Hossbach, Julian, Husvogt, Lennart, Kraus, Martin F., Fujimoto, James G, Maier, Andreas K.
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics
Format: Article
Language:English
Published: Springer Fachmedien Wiesbaden 2021
Online Access:https://hdl.handle.net/1721.1/129342
_version_ 1826204137350496256
author Hossbach, Julian
Husvogt, Lennart
Kraus, Martin F.
Fujimoto, James G
Maier, Andreas K.
author2 Massachusetts Institute of Technology. Research Laboratory of Electronics
author_facet Massachusetts Institute of Technology. Research Laboratory of Electronics
Hossbach, Julian
Husvogt, Lennart
Kraus, Martin F.
Fujimoto, James G
Maier, Andreas K.
author_sort Hossbach, Julian
collection MIT
description Part of the Informatik aktuell book series (INFORMAT)
first_indexed 2024-09-23T12:49:29Z
format Article
id mit-1721.1/129342
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:49:29Z
publishDate 2021
publisher Springer Fachmedien Wiesbaden
record_format dspace
spelling mit-1721.1/1293422022-10-01T11:21:02Z Deep OCT Angiography Image Generation for Motion Artifact Suppression Hossbach, Julian Husvogt, Lennart Kraus, Martin F. Fujimoto, James G Maier, Andreas K. Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Part of the Informatik aktuell book series (INFORMAT) Eye movements, blinking and other motion during the acquisition of optical coherence tomography (OCT) can lead to artifacts, when processed to OCT angiography (OCTA) images. Affected scans emerge as high intensity (white) or missing (black) regions, resulting in lost information. The aim of this research is to fill these gaps using a deep generative model for OCT to OCTA image translation relying on a single intact OCT scan. Therefore, a U-Net is trained to extract the angiographic information from OCT patches. At inference, a detection algorithm finds outlier OCTA scans based on their surroundings, which are then replaced by the trained network. We show that generative models can augment the missing scans. The augmented volumes could then be used for 3-D segmentation or increase the diagnostic value. 2021-01-08T15:10:59Z 2021-01-08T15:10:59Z 2020-02 2020-12-14T20:29:15Z Article http://purl.org/eprint/type/ConferencePaper 9783658292669 9783658292676 1431-472X https://hdl.handle.net/1721.1/129342 Hossbach, Julian et al. "Deep OCT Angiography Image Generation for Motion Artifact Suppression." Bildverarbeitung für die Medizin 2020, Informatik aktuell, Springer Fachmedien Wiesbaden, 2020, 248-253. © 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature en http://dx.doi.org/10.1007/978-3-658-29267-6_55 Informatik aktuell Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer Fachmedien Wiesbaden arXiv
spellingShingle Hossbach, Julian
Husvogt, Lennart
Kraus, Martin F.
Fujimoto, James G
Maier, Andreas K.
Deep OCT Angiography Image Generation for Motion Artifact Suppression
title Deep OCT Angiography Image Generation for Motion Artifact Suppression
title_full Deep OCT Angiography Image Generation for Motion Artifact Suppression
title_fullStr Deep OCT Angiography Image Generation for Motion Artifact Suppression
title_full_unstemmed Deep OCT Angiography Image Generation for Motion Artifact Suppression
title_short Deep OCT Angiography Image Generation for Motion Artifact Suppression
title_sort deep oct angiography image generation for motion artifact suppression
url https://hdl.handle.net/1721.1/129342
work_keys_str_mv AT hossbachjulian deepoctangiographyimagegenerationformotionartifactsuppression
AT husvogtlennart deepoctangiographyimagegenerationformotionartifactsuppression
AT krausmartinf deepoctangiographyimagegenerationformotionartifactsuppression
AT fujimotojamesg deepoctangiographyimagegenerationformotionartifactsuppression
AT maierandreask deepoctangiographyimagegenerationformotionartifactsuppression