High Dimensional Inference with Random Maximum A-Posteriori Perturbations
This paper presents a new approach, called perturb-max, for high-dimensional statistical inference in graphical models that is based on applying random perturbations followed by optimization. This framework injects randomness into maximum a-posteriori (MAP) predictors by randomly perturbing the pote...
Principais autores: | Maji, Subhransu, Jaakkola, Tommi S |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
Acesso em linha: | https://hdl.handle.net/1721.1/129369 |
Registros relacionados
-
On sampling from the Gibbs distribution with random maximum a-posteriori perturbations
por: Hazan, Tamir, et al.
Publicado em: (2015) -
On the Partition Function and Random Maximum A-Posteriori Perturbations
por: Hazan, Tamir, et al.
Publicado em: (2021) -
On the Partition Function and Random Maximum A-Posteriori Perturbations
por: Hazan, Tamir, et al.
Publicado em: (2021) -
Learning efficient random maximum a-posteriori predictors with non-decomposable loss functions
por: Hazan, Tamir, et al.
Publicado em: (2015) -
On measure concentration of random maximum a-posteriori perturbations
por: Orabona, Francesco, et al.
Publicado em: (2015)