High Dimensional Inference with Random Maximum A-Posteriori Perturbations

This paper presents a new approach, called perturb-max, for high-dimensional statistical inference in graphical models that is based on applying random perturbations followed by optimization. This framework injects randomness into maximum a-posteriori (MAP) predictors by randomly perturbing the pote...

ver descrição completa

Detalhes bibliográficos
Principais autores: Maji, Subhransu, Jaakkola, Tommi S
Outros Autores: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Formato: Artigo
Idioma:English
Publicado em: Institute of Electrical and Electronics Engineers (IEEE) 2021
Acesso em linha:https://hdl.handle.net/1721.1/129369

Registros relacionados