A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of √ s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS de...

Full description

Bibliographic Details
Main Authors: Abercrombie, Daniel Robert, Allen, Benjamin E., Baty, Austin Alan, Bi, Ran, Brandt, Stephanie Akemi, Busza, Wit, Cali, Ivan Amos, D'Alfonso, Mariarosaria, Gomez-Ceballos, Guillelmo, Goncharov, Maxim, Harris, Philip Coleman, Hsu, David, Hu, Miao, Klute, Markus, Kovalskyi, Dmytro, Lee, Youjin, Luckey Jr, P David, Maier, Benedikt, Marini, Andrea Carlo, McGinn, Christopher Francis, Mironov, Camelia Maria, Narayanan, Sruthi Annapoorny, Niu, Xinmei, Paus, Christoph M. E., Rankin, Dylan Sheldon, Roland, Christof E, Roland, Gunther M, Shi, Zhenhua, Stephans, George S. F., Sumorok, Konstanty C, Tatar, Kaya, Velicanu, Dragos Alexandru, Wang, J., Wang, Tianwen, Wyslouch, Boleslaw
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: Springer International Publishing 2021
Online Access:https://hdl.handle.net/1721.1/129404
_version_ 1826192095137759232
author Abercrombie, Daniel Robert
Allen, Benjamin E.
Baty, Austin Alan
Bi, Ran
Brandt, Stephanie Akemi
Busza, Wit
Cali, Ivan Amos
D'Alfonso, Mariarosaria
Gomez-Ceballos, Guillelmo
Goncharov, Maxim
Harris, Philip Coleman
Hsu, David
Hu, Miao
Klute, Markus
Kovalskyi, Dmytro
Lee, Youjin
Luckey Jr, P David
Maier, Benedikt
Marini, Andrea Carlo
McGinn, Christopher Francis
Mironov, Camelia Maria
Narayanan, Sruthi Annapoorny
Niu, Xinmei
Paus, Christoph M. E.
Rankin, Dylan Sheldon
Roland, Christof E
Roland, Gunther M
Shi, Zhenhua
Stephans, George S. F.
Sumorok, Konstanty C
Tatar, Kaya
Velicanu, Dragos Alexandru
Wang, J.
Wang, Tianwen
Wyslouch, Boleslaw
author2 Massachusetts Institute of Technology. Department of Physics
author_facet Massachusetts Institute of Technology. Department of Physics
Abercrombie, Daniel Robert
Allen, Benjamin E.
Baty, Austin Alan
Bi, Ran
Brandt, Stephanie Akemi
Busza, Wit
Cali, Ivan Amos
D'Alfonso, Mariarosaria
Gomez-Ceballos, Guillelmo
Goncharov, Maxim
Harris, Philip Coleman
Hsu, David
Hu, Miao
Klute, Markus
Kovalskyi, Dmytro
Lee, Youjin
Luckey Jr, P David
Maier, Benedikt
Marini, Andrea Carlo
McGinn, Christopher Francis
Mironov, Camelia Maria
Narayanan, Sruthi Annapoorny
Niu, Xinmei
Paus, Christoph M. E.
Rankin, Dylan Sheldon
Roland, Christof E
Roland, Gunther M
Shi, Zhenhua
Stephans, George S. F.
Sumorok, Konstanty C
Tatar, Kaya
Velicanu, Dragos Alexandru
Wang, J.
Wang, Tianwen
Wyslouch, Boleslaw
author_sort Abercrombie, Daniel Robert
collection MIT
description We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of √ s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb⁻¹. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b[overline b]. .
first_indexed 2024-09-23T09:06:11Z
format Article
id mit-1721.1/129404
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T09:06:11Z
publishDate 2021
publisher Springer International Publishing
record_format dspace
spelling mit-1721.1/1294042022-09-30T13:26:24Z A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution Abercrombie, Daniel Robert Allen, Benjamin E. Baty, Austin Alan Bi, Ran Brandt, Stephanie Akemi Busza, Wit Cali, Ivan Amos D'Alfonso, Mariarosaria Gomez-Ceballos, Guillelmo Goncharov, Maxim Harris, Philip Coleman Hsu, David Hu, Miao Klute, Markus Kovalskyi, Dmytro Lee, Youjin Luckey Jr, P David Maier, Benedikt Marini, Andrea Carlo McGinn, Christopher Francis Mironov, Camelia Maria Narayanan, Sruthi Annapoorny Niu, Xinmei Paus, Christoph M. E. Rankin, Dylan Sheldon Roland, Christof E Roland, Gunther M Shi, Zhenhua Stephans, George S. F. Sumorok, Konstanty C Tatar, Kaya Velicanu, Dragos Alexandru Wang, J. Wang, Tianwen Wyslouch, Boleslaw Massachusetts Institute of Technology. Department of Physics Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Massachusetts Institute of Technology. Laboratory for Nuclear Science Lincoln Laboratory We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of √ s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb⁻¹. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b[overline b]. . 2021-01-13T17:04:43Z 2021-01-13T17:04:43Z 2020-10 2019-12 2021-01-03T04:16:35Z Article http://purl.org/eprint/type/JournalArticle 2510-2044 2510-2036 https://hdl.handle.net/1721.1/129404 Sirunyan, A. M. et al. "A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution." Computing and Software for Big Science 4, 10 (October 2020): doi.org/10.1007/s41781-020-00041-z. © 2020 The Author(s) en https://doi.org/10.1007/s41781-020-00041-z Computing and Software for Big Science Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf Springer International Publishing Springer International Publishing
spellingShingle Abercrombie, Daniel Robert
Allen, Benjamin E.
Baty, Austin Alan
Bi, Ran
Brandt, Stephanie Akemi
Busza, Wit
Cali, Ivan Amos
D'Alfonso, Mariarosaria
Gomez-Ceballos, Guillelmo
Goncharov, Maxim
Harris, Philip Coleman
Hsu, David
Hu, Miao
Klute, Markus
Kovalskyi, Dmytro
Lee, Youjin
Luckey Jr, P David
Maier, Benedikt
Marini, Andrea Carlo
McGinn, Christopher Francis
Mironov, Camelia Maria
Narayanan, Sruthi Annapoorny
Niu, Xinmei
Paus, Christoph M. E.
Rankin, Dylan Sheldon
Roland, Christof E
Roland, Gunther M
Shi, Zhenhua
Stephans, George S. F.
Sumorok, Konstanty C
Tatar, Kaya
Velicanu, Dragos Alexandru
Wang, J.
Wang, Tianwen
Wyslouch, Boleslaw
A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title_full A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title_fullStr A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title_full_unstemmed A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title_short A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
title_sort deep neural network for simultaneous estimation of b jet energy and resolution
url https://hdl.handle.net/1721.1/129404
work_keys_str_mv AT abercrombiedanielrobert adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT allenbenjamine adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT batyaustinalan adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT biran adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT brandtstephanieakemi adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT buszawit adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT caliivanamos adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT dalfonsomariarosaria adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT gomezceballosguillelmo adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT goncharovmaxim adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT harrisphilipcoleman adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT hsudavid adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT humiao adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT klutemarkus adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT kovalskyidmytro adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT leeyoujin adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT luckeyjrpdavid adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT maierbenedikt adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mariniandreacarlo adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mcginnchristopherfrancis adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mironovcameliamaria adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT narayanansruthiannapoorny adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT niuxinmei adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT pauschristophme adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rankindylansheldon adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rolandchristofe adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rolandguntherm adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT shizhenhua adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT stephansgeorgesf adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT sumorokkonstantyc adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT tatarkaya adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT velicanudragosalexandru adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wangj adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wangtianwen adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wyslouchboleslaw adeepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT abercrombiedanielrobert deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT allenbenjamine deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT batyaustinalan deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT biran deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT brandtstephanieakemi deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT buszawit deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT caliivanamos deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT dalfonsomariarosaria deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT gomezceballosguillelmo deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT goncharovmaxim deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT harrisphilipcoleman deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT hsudavid deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT humiao deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT klutemarkus deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT kovalskyidmytro deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT leeyoujin deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT luckeyjrpdavid deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT maierbenedikt deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mariniandreacarlo deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mcginnchristopherfrancis deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT mironovcameliamaria deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT narayanansruthiannapoorny deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT niuxinmei deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT pauschristophme deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rankindylansheldon deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rolandchristofe deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT rolandguntherm deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT shizhenhua deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT stephansgeorgesf deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT sumorokkonstantyc deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT tatarkaya deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT velicanudragosalexandru deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wangj deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wangtianwen deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution
AT wyslouchboleslaw deepneuralnetworkforsimultaneousestimationofbjetenergyandresolution