Long Live TIME: Improving Lifetime and Security for NVM-Based Training-in-Memory Systems
Nonvolatile memory (NVM)-based training-in-memory (TIME) systems have emerged that can process the neural network (NN) training in an energy-efficient manner. However, the endurance of NVM cells is disappointing, rendering concerns about the lifetime of TIME systems, because the weights of NN models...
Үндсэн зохиолчид: | Lin, Yujun, Han, Song |
---|---|
Бусад зохиолчид: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
Формат: | Өгүүллэг |
Хэвлэсэн: |
IEEE
2021
|
Онлайн хандалт: | https://hdl.handle.net/1721.1/129440 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification
-н: Han, Song
Хэвлэсэн: (2021) -
Si nanowire based NVM : SONOS fabrication & characterization
-н: Chen, Mincong.
Хэвлэсэн: (2009) -
Next generation programming environments and architectures for NVM-based computing and storage systems
-н: Poh, Shie Liang
Хэвлэсэн: (2015) -
Design of non-destructive single-sawtooth pulse based readout for STT-RAM by NVM-SPICE
-н: Wang, Yuhao, зэрэг
Хэвлэсэн: (2013) -
A novel FPGA implementation of mirror-paradigm RS-based QC-LDPC decoder for NVM channels
-н: Lim, Melvin Heng Li, зэрэг
Хэвлэсэн: (2013)