Long Live TIME: Improving Lifetime and Security for NVM-Based Training-in-Memory Systems
Nonvolatile memory (NVM)-based training-in-memory (TIME) systems have emerged that can process the neural network (NN) training in an energy-efficient manner. However, the endurance of NVM cells is disappointing, rendering concerns about the lifetime of TIME systems, because the weights of NN models...
প্রধান লেখক: | Lin, Yujun, Han, Song |
---|---|
অন্যান্য লেখক: | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
বিন্যাস: | প্রবন্ধ |
প্রকাশিত: |
IEEE
2021
|
অনলাইন ব্যবহার করুন: | https://hdl.handle.net/1721.1/129440 |
অনুরূপ উপাদানগুলি
অনুরূপ উপাদানগুলি
-
Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification
অনুযায়ী: Han, Song
প্রকাশিত: (2021) -
Si nanowire based NVM : SONOS fabrication & characterization
অনুযায়ী: Chen, Mincong.
প্রকাশিত: (2009) -
Next generation programming environments and architectures for NVM-based computing and storage systems
অনুযায়ী: Poh, Shie Liang
প্রকাশিত: (2015) -
Design of non-destructive single-sawtooth pulse based readout for STT-RAM by NVM-SPICE
অনুযায়ী: Wang, Yuhao, অন্যান্য
প্রকাশিত: (2013) -
A novel FPGA implementation of mirror-paradigm RS-based QC-LDPC decoder for NVM channels
অনুযায়ী: Lim, Melvin Heng Li, অন্যান্য
প্রকাশিত: (2013)