Genetic Engineering by DNA Recombineering

Recombineering inserts PCR products into DNA using homologous recombination. A pair of short homology arms (50 base pairs) on the ends of a PCR cassette target the cassette to its intended location. These homology arms can be easily introduced as 5' primer overhangs during the PCR reaction. The...

Full description

Bibliographic Details
Main Authors: Papa, Louis John, Shoulders, Matthew D.
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: Wiley 2021
Online Access:https://hdl.handle.net/1721.1/129451
Description
Summary:Recombineering inserts PCR products into DNA using homologous recombination. A pair of short homology arms (50 base pairs) on the ends of a PCR cassette target the cassette to its intended location. These homology arms can be easily introduced as 5' primer overhangs during the PCR reaction. The flexibility to choose almost any pair of homology arms enables the precise modification of virtually any DNA for purposes of sequence deletion, replacement, insertion, or point mutation. Recombineering often offers significant advantages relative to previous homologous recombination methods that require the construction of cassettes with large homology arms, and relative to traditional cloning methods that become intractable for large plasmids or DNA sequences. However, the tremendous number of variables, options, and pitfalls that can be encountered when designing and performing a recombineering protocol for the first time introduce barriers that can make recombineering a challenging technique for new users to adopt. This article focuses on three recombineering protocols we have found to be particularly robust, providing a detailed guide for choosing the simplest recombineering method for a given application and for performing and troubleshooting experiments.