Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations
The data-driven discovery of partial differential equations (PDEs) consistent with spatiotemporal data is experiencing a rebirth in machine learning research. Training deep neural networks to learn such data-driven partial differential operators requires extensive spatiotemporal data. For learning c...
主要作者: | Arbabi, Hassan |
---|---|
其他作者: | Massachusetts Institute of Technology. Department of Mechanical Engineering |
格式: | 文件 |
语言: | English |
出版: |
Springer US
2021
|
在线阅读: | https://hdl.handle.net/1721.1/129683 |
相似书籍
-
Homogenization and bounds for multiscale problems
由: Ang, Eng Hong
出版: (2020) -
Homogenization methods for multiscale mechanics /
由: 183486 Mei, Chiang C., et al.
出版: (2010) -
Multiscale maxwell equations : homogenization and high dimensional finite element method
由: Chu, Van Tiep
出版: (2016) -
Multiscale homogenization of a class of nonlinear equations with applications in lubrication theory and applications
由: Andreas Almqvist, et al.
出版: (2011-01-01) -
Multiscale systems, homogenization, and rough paths
由: Chevyrev, I, et al.
出版: (2019)