Tunable Matching Networks Based on Phase-Switched Impedance Modulation1

The ability to provide accurate, rapid, and dynamically controlled impedance matching offers significant advantages to a wide range of present and emerging radio-frequency (RF) power applications. This article develops a new type of tunable matching network (TMN) that enables a combination of much f...

Full description

Bibliographic Details
Main Authors: Jurkov, Alexander S., Radomski, Aaron, Perreault, David J.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access:https://hdl.handle.net/1721.1/129801
Description
Summary:The ability to provide accurate, rapid, and dynamically controlled impedance matching offers significant advantages to a wide range of present and emerging radio-frequency (RF) power applications. This article develops a new type of tunable matching network (TMN) that enables a combination of much faster and more accurate impedance matching than is available with conventional techniques and is suitable for use at high power levels. This implementation is based on a narrow-band technique, termed here phase-switched impedance modulation (PSIM), which entails the switching of passive elements at the RF operating frequency, effectively modulating their impedances. The proposed approach provides absorption of device parasitics and zero-voltage switching (ZVS) of the active devices, and we introduce control techniques that enable ZVS operation to be maintained across operating conditions. A prototype PSIM-based TMN is developed that provides a 50-Ω match over a load impedance range suitable for inductively coupled plasma processes. The prototype TMN operates at frequencies centered around 13.56 MHz at input RF power levels of up to 200 W.