Robust Object-based SLAM for High-speed Autonomous Navigation

We present Robust Object-based SLAM for High-speed Autonomous Navigation (ROSHAN), a novel approach to object-level mapping suitable for autonomous navigation. In ROSHAN, we represent objects as ellipsoids and infer their parameters using three sources of information - bounding box detections, image...

Full description

Bibliographic Details
Main Authors: Ok, Kyel, Liu, Katherine Y, Frey, Kristoffer M. (Kristoffer Martin), How, Jonathan P, Roy, Nicholas
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE) 2021
Online Access:https://hdl.handle.net/1721.1/130015
Description
Summary:We present Robust Object-based SLAM for High-speed Autonomous Navigation (ROSHAN), a novel approach to object-level mapping suitable for autonomous navigation. In ROSHAN, we represent objects as ellipsoids and infer their parameters using three sources of information - bounding box detections, image texture, and semantic knowledge - to overcome the observability problem in ellipsoid-based SLAM under common forward-translating vehicle motions. Each bounding box provides four planar constraints on an object surface and we add a fifth planar constraint using the texture on the objects along with a semantic prior on the shape of ellipsoids. We demonstrate ROSHAN in simulation where we outperform the baseline, reducing the median shape error by 83% and the median position error by 72% in a forward-moving camera sequence. We demonstrate similar qualitative result on data collected on a fast-moving autonomous quadrotor.