Global maxwell tomography using an 8-channel radiofrequency coil: Simulation results for a tissue-mimicking phantom at 7T

We simulated a Global Maxwell Tomography experiment for the estimation of electrical properties in a numerical tissue-mimicking phantom using a decoupled 8 channel radiofrequency coil designed for 7 Tesla magnetic resonance scanners. The goal of this work was to investigate whether the orthogonality...

Full description

Bibliographic Details
Main Authors: Serrallés, José E.C., Daniel, Luca, White, Jacob K.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: IEEE 2021
Online Access:https://hdl.handle.net/1721.1/130074
Description
Summary:We simulated a Global Maxwell Tomography experiment for the estimation of electrical properties in a numerical tissue-mimicking phantom using a decoupled 8 channel radiofrequency coil designed for 7 Tesla magnetic resonance scanners. The goal of this work was to investigate whether the orthogonality of the coil's transmit fields (b1+ measurements) is required to ensure accurate results. We demonstrated a normalized root mean squared error smaller than 0.6% with respect to the true electrical properties distribution. Our results showed that electrical properties reconstruction with Global Maxwell Tomography is accurate and robust.