Global maxwell tomography using an 8-channel radiofrequency coil: Simulation results for a tissue-mimicking phantom at 7T
We simulated a Global Maxwell Tomography experiment for the estimation of electrical properties in a numerical tissue-mimicking phantom using a decoupled 8 channel radiofrequency coil designed for 7 Tesla magnetic resonance scanners. The goal of this work was to investigate whether the orthogonality...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
IEEE
2021
|
Online Access: | https://hdl.handle.net/1721.1/130074 |
Summary: | We simulated a Global Maxwell Tomography experiment for the estimation of electrical properties in a numerical tissue-mimicking phantom using a decoupled 8 channel radiofrequency coil designed for 7 Tesla magnetic resonance scanners. The goal of this work was to investigate whether the orthogonality of the coil's transmit fields (b1+ measurements) is required to ensure accurate results. We demonstrated a normalized root mean squared error smaller than 0.6% with respect to the true electrical properties distribution. Our results showed that electrical properties reconstruction with Global Maxwell Tomography is accurate and robust. |
---|