Control for Dynamic Positioning and Way-point Tracking of Underactuated Autonomous Underwater Vehicles Using Sliding Mode Control

Abstract: Autonomous Underwater Vehicles (AUVs) are used in many applications such as the exploration of oceans, scientific and military missions, etc. Developing control schemes for AUVs is considered to be a very challenging task due to the complexity of the AUV model, the unmodeled dynamics, the...

Full description

Bibliographic Details
Main Authors: Elmokadem, Taha, Zribi, Mohamed, Youcef-Toumi, Kamal
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Springer Netherlands 2021
Online Access:https://hdl.handle.net/1721.1/130117
Description
Summary:Abstract: Autonomous Underwater Vehicles (AUVs) are used in many applications such as the exploration of oceans, scientific and military missions, etc. Developing control schemes for AUVs is considered to be a very challenging task due to the complexity of the AUV model, the unmodeled dynamics, the uncertainties and the environmental disturbances. This paper develops a robust control scheme for the dynamic positioning and way-point tracking of underactuated autonomous underwater vehicles. In order to insure the robustness of the proposed controllers, the sliding mode control technique is adopted in the design process. Simulation results are given to validate the proposed controllers. Moreover, studies are presented to evaluate the robustness of the developed controllers with model uncertainties and under different types of disturbances including unknown currents.