Millivolt silicon photonic modulators for cryogenic applications
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/1721.1/130202 |
_version_ | 1826195182144454656 |
---|---|
author | De Cea Falco, Marc. |
author2 | Rajeev J. Ram. |
author_facet | Rajeev J. Ram. De Cea Falco, Marc. |
author_sort | De Cea Falco, Marc. |
collection | MIT |
description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020 |
first_indexed | 2024-09-23T10:09:01Z |
format | Thesis |
id | mit-1721.1/130202 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T10:09:01Z |
publishDate | 2021 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/1302022021-03-23T03:29:47Z Millivolt silicon photonic modulators for cryogenic applications De Cea Falco, Marc. Rajeev J. Ram. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Electrical Engineering and Computer Science. Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020 Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 275-298). Cryogenic technologies promise to overcome existing bottlenecks in a range of science and engineering fields including quantum computing, high performance computing and single-photon communication systems. As these technologies mature and systems scale, a readout solution for high speed, low power data transfer between the cryogenic environment and room temperature becomes essential. The use of optical links for such data transfer - in what is known as cryogenic optical readout - is appealing due to the low heat conduction of optical fiber and the possibility to exploit wavelength division multiplexing architectures. However, existing demonstrations suffer from large power dissipation associated with amplifying the millivolt signals generated by the cryogenic systems. This thesis deals with the development of silicon photonic modulators operating at cryogenic temperatures and capable of modulating an optical carrier with millivol-level driving signals. We show cryogenic operation of CMOS photonic resonant modulators in the forward bias regime with high modulation efficiency and reduced power dissipation, and demonstrate cryogenic optical readout of a superconducting single photon detector. We also present a new operation mode for optical modulators that leverages parasitic photocurrent to achieve electrical gain and reduce power dissipation. Modulation with signal levels down to 4 mVpp and electrical power dissipation in the zJ/bit range is demonstrated. This thesis sets the foundation for silicon photonics to realize scalable, low power, high throughput cryogenic readout, addressing one of the key remaining challenges for the wide adoption of cryogenic technologies. by Marc de Cea Falco. S.M. S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science 2021-03-22T17:18:38Z 2021-03-22T17:18:38Z 2020 2020 Thesis https://hdl.handle.net/1721.1/130202 1241199297 eng MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582 298 pages application/pdf Massachusetts Institute of Technology |
spellingShingle | Electrical Engineering and Computer Science. De Cea Falco, Marc. Millivolt silicon photonic modulators for cryogenic applications |
title | Millivolt silicon photonic modulators for cryogenic applications |
title_full | Millivolt silicon photonic modulators for cryogenic applications |
title_fullStr | Millivolt silicon photonic modulators for cryogenic applications |
title_full_unstemmed | Millivolt silicon photonic modulators for cryogenic applications |
title_short | Millivolt silicon photonic modulators for cryogenic applications |
title_sort | millivolt silicon photonic modulators for cryogenic applications |
topic | Electrical Engineering and Computer Science. |
url | https://hdl.handle.net/1721.1/130202 |
work_keys_str_mv | AT deceafalcomarc millivoltsiliconphotonicmodulatorsforcryogenicapplications |