Acceleration in First Order Quasi-strongly Convex Optimization by ODE Discretization

We study gradient-based optimization methods obtained by direct Runge-Kutta discretization of the ordinary differential equation (ODE) describing the movement of a heavy-ball under constant friction coefficient. When the function is high-order smooth and strongly convex, we show that directly simula...

全面介绍

书目详细资料
Main Authors: Zhang, Jingzhao, Sra, Suvrit, Jadbabaie, Ali
其他作者: Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
格式: 文件
语言:English
出版: Institute of Electrical and Electronics Engineers (IEEE) 2021
在线阅读:https://hdl.handle.net/1721.1/130426

相似书籍