Robust monotone submodular function maximization

Abstract We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered...

Full description

Bibliographic Details
Main Authors: Orlin, James B, Schulz, Andreas S, Udwani, Rajan
Other Authors: Sloan School of Management
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2021
Online Access:https://hdl.handle.net/1721.1/131367
_version_ 1826197242268090368
author Orlin, James B
Schulz, Andreas S
Udwani, Rajan
author2 Sloan School of Management
author_facet Sloan School of Management
Orlin, James B
Schulz, Andreas S
Udwani, Rajan
author_sort Orlin, James B
collection MIT
description Abstract We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to $$\tau $$ τ elements from the chosen set. For the fundamental case of $$\tau =1$$ τ = 1 , we give a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximation algorithm, where m is an input parameter and number of queries scale as $$O(n^{m+1})$$ O ( n m + 1 ) . In the process, we develop a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized $$(1-1/e)-\epsilon $$ ( 1 - 1 / e ) - ϵ approximation for constant $$\tau $$ τ and $$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$ ϵ ≤ 1 Ω ~ ( τ ) , making $$O(n^{1/\epsilon ^3})$$ O ( n 1 / ϵ 3 ) queries. Further, for $$\tau \ll \sqrt{k}$$ τ ≪ k , we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
first_indexed 2024-09-23T10:44:41Z
format Article
id mit-1721.1/131367
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T10:44:41Z
publishDate 2021
publisher Springer Berlin Heidelberg
record_format dspace
spelling mit-1721.1/1313672023-12-13T15:54:37Z Robust monotone submodular function maximization Orlin, James B Schulz, Andreas S Udwani, Rajan Sloan School of Management Abstract We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to $$\tau $$ τ elements from the chosen set. For the fundamental case of $$\tau =1$$ τ = 1 , we give a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximation algorithm, where m is an input parameter and number of queries scale as $$O(n^{m+1})$$ O ( n m + 1 ) . In the process, we develop a deterministic $$(1-1/e)-1/\varTheta (m)$$ ( 1 - 1 / e ) - 1 / Θ ( m ) approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized $$(1-1/e)-\epsilon $$ ( 1 - 1 / e ) - ϵ approximation for constant $$\tau $$ τ and $$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$ ϵ ≤ 1 Ω ~ ( τ ) , making $$O(n^{1/\epsilon ^3})$$ O ( n 1 / ϵ 3 ) queries. Further, for $$\tau \ll \sqrt{k}$$ τ ≪ k , we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System. 2021-09-20T17:16:45Z 2021-09-20T17:16:45Z 2018-09-15 2020-09-24T21:02:04Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/131367 en https://doi.org/10.1007/s10107-018-1320-2 Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society application/pdf Springer Berlin Heidelberg Springer Berlin Heidelberg
spellingShingle Orlin, James B
Schulz, Andreas S
Udwani, Rajan
Robust monotone submodular function maximization
title Robust monotone submodular function maximization
title_full Robust monotone submodular function maximization
title_fullStr Robust monotone submodular function maximization
title_full_unstemmed Robust monotone submodular function maximization
title_short Robust monotone submodular function maximization
title_sort robust monotone submodular function maximization
url https://hdl.handle.net/1721.1/131367
work_keys_str_mv AT orlinjamesb robustmonotonesubmodularfunctionmaximization
AT schulzandreass robustmonotonesubmodularfunctionmaximization
AT udwanirajan robustmonotonesubmodularfunctionmaximization