A hardness of approximation result in metric geometry

Abstract We show that it is $${\mathsf {NP}}$$ NP -hard to approximate the hyperspherical radius of a triangulated manifold up to an almost-polynomial factor.

Bibliographic Details
Main Authors: Brady, Zarathustra, Guth, Larry, Manin, Fedor
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Springer International Publishing 2021
Online Access:https://hdl.handle.net/1721.1/131412
_version_ 1811085631951994880
author Brady, Zarathustra
Guth, Larry
Manin, Fedor
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Brady, Zarathustra
Guth, Larry
Manin, Fedor
author_sort Brady, Zarathustra
collection MIT
description Abstract We show that it is $${\mathsf {NP}}$$ NP -hard to approximate the hyperspherical radius of a triangulated manifold up to an almost-polynomial factor.
first_indexed 2024-09-23T13:12:43Z
format Article
id mit-1721.1/131412
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:12:43Z
publishDate 2021
publisher Springer International Publishing
record_format dspace
spelling mit-1721.1/1314122023-03-15T20:32:40Z A hardness of approximation result in metric geometry Brady, Zarathustra Guth, Larry Manin, Fedor Massachusetts Institute of Technology. Department of Mathematics Abstract We show that it is $${\mathsf {NP}}$$ NP -hard to approximate the hyperspherical radius of a triangulated manifold up to an almost-polynomial factor. 2021-09-20T17:16:57Z 2021-09-20T17:16:57Z 2020-07-20 2020-09-24T21:11:50Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/131412 Selecta Mathematica. 2020 Jul 20;26(4):54 en https://doi.org/10.1007/s00029-020-00585-3 Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ Springer Nature Switzerland AG application/pdf Springer International Publishing Springer International Publishing
spellingShingle Brady, Zarathustra
Guth, Larry
Manin, Fedor
A hardness of approximation result in metric geometry
title A hardness of approximation result in metric geometry
title_full A hardness of approximation result in metric geometry
title_fullStr A hardness of approximation result in metric geometry
title_full_unstemmed A hardness of approximation result in metric geometry
title_short A hardness of approximation result in metric geometry
title_sort hardness of approximation result in metric geometry
url https://hdl.handle.net/1721.1/131412
work_keys_str_mv AT bradyzarathustra ahardnessofapproximationresultinmetricgeometry
AT guthlarry ahardnessofapproximationresultinmetricgeometry
AT maninfedor ahardnessofapproximationresultinmetricgeometry
AT bradyzarathustra hardnessofapproximationresultinmetricgeometry
AT guthlarry hardnessofapproximationresultinmetricgeometry
AT maninfedor hardnessofapproximationresultinmetricgeometry