Summary: | Abstract
We introduce a randomized Hall–Littlewood RSK algorithm and study its combinatorial and probabilistic properties. On the probabilistic side, a new model—the Hall–Littlewood RSK field—is introduced. Its various degenerations contain known objects (the stochastic six vertex model, the asymmetric simple exclusion process) as well as a variety of new ones. We provide formulas for a rich class of observables of these models, extending existing results about Macdonald processes. On the combinatorial side, we establish analogs of properties of the classical RSK algorithm: invertibility, symmetry, and a “bijectivization” of the skew-Cauchy identity.
|