A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
Abstract Aiming to solve the problems of low accuracy of multi-step prediction and difficulty in determining the maximum number of prediction steps of chaotic time series, a multi-step time series prediction model based on the dilated convolution network and long short-term memory (LSTM), named the...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer International Publishing
2021
|
Online Access: | https://hdl.handle.net/1721.1/131462 |
Search Result 1