Revisiting norm optimization for multi-objective black-box problems: a finite-time analysis
Abstract The complexity of Pareto fronts imposes a great challenge on the convergence analysis of multi-objective optimization methods. While most theoretical convergence studies have addressed finite-set and/or discrete problems, others have provided probabilistic guarantees, assumed...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer US
2021
|
Online Access: | https://hdl.handle.net/1721.1/131494 |
Summary: | Abstract
The complexity of Pareto fronts imposes a great challenge on the convergence analysis of multi-objective optimization methods. While most theoretical convergence studies have addressed finite-set and/or discrete problems, others have provided probabilistic guarantees, assumed a total order on the solutions, or studied their asymptotic behaviour. In this paper, we revisit the Tchebycheff weighted method in a hierarchical bandits setting and provide a finite-time bound on the Pareto-compliant additive
$$\epsilon $$
ϵ
-indicator. To the best of our knowledge, this paper is one of few that establish a link between weighted sum methods and quality indicators in finite time. |
---|