Certifiably optimal sparse principal component analysis
Abstract This paper addresses the sparse principal component analysis (SPCA) problem for covariance matrices in dimension n aiming to find solutions with sparsity k using mixed integer optimization. We propose a tailored branch-and-bound algorithm, Optimal-SPCA, that enables us to sol...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2021
|
Online Access: | https://hdl.handle.net/1721.1/131566 |