Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at s$$ \sqrt{\mathrm{s}} $$ = 13 TeV and constraints on anomalous quartic couplings

Abstract A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Zγjj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electr...

Full description

Bibliographic Details
Main Authors: Sirunyan, A. M, Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Brandstetter, J., Dragicevic, M., Erö, J., Escalante Del Valle, A., Flechl, M., Frühwirth, R., Jeitler, M., Krammer, N., Krätschmer, I., Liko, D., Madlener, T., Mikulec, I., Rad, N.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2021
Online Access:https://hdl.handle.net/1721.1/131708
Description
Summary:Abstract A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Zγjj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Zγjj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at s$$ \sqrt{s} $$ = 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at s$$ \sqrt{s} $$ = 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Zγjj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.