Fuzzy Aggregated Topology Evolution for Cognitive Multi-tasks
Abstract Evolutionary optimization aims to tune the hyper-parameters during learning in a computationally fast manner. For optimization of multi-task problems, evolution is done by creating a unified search space with a dimensionality that can include all the tasks. Multi-task evoluti...
Main Authors: | Chaturvedi, Iti, Su, Chit L, Welsch, Roy E |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado: |
Springer US
2021
|
Acceso en liña: | https://hdl.handle.net/1721.1/131981 |
Títulos similares
-
Fuzzy Aggregated Topology Evolution for Cognitive Multi-tasks
por: Chaturvedi, Iti, et al.
Publicado: (2022) -
Teaching simulations supported by artificial intelligence in the real world
por: Chaturvedi, Iti, et al.
Publicado: (2023) -
Teaching Simulations Supported by Artificial Intelligence in the Real World
por: Chaturvedi, Iti, et al.
Publicado: (2023) -
Barrier Function to Skin Elasticity in Talking Head
por: Chaturvedi, Iti, et al.
Publicado: (2024) -
Fuzzy commonsense reasoning for multimodal sentiment analysis
por: Chaturvedi, Iti, et al.
Publicado: (2021)