Origin of the primitive, strongly SiO2-undersaturated alkalic rocks from the Deccan Traps by low-degree mantle melting and high-pressure fractional crystallization
Abstract Strongly SiO2-undersaturated alkalic rocks (Mg# > 50, SiO2 ≤ 45 wt%, Na2O + K2O ≥ 3 wt%) occur in three early-stage (Sarnu-Dandali, Mundwara, Bhuj) and one late-stage (Murud-Janjira) rift-associated volcanic complexes in the Cretaceous-Paleogene Deccan Traps flood basalt p...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2021
|
Online Access: | https://hdl.handle.net/1721.1/132102 |
Summary: | Abstract
Strongly SiO2-undersaturated alkalic rocks (Mg# > 50, SiO2 ≤ 45 wt%, Na2O + K2O ≥ 3 wt%) occur in three early-stage (Sarnu-Dandali, Mundwara, Bhuj) and one late-stage (Murud-Janjira) rift-associated volcanic complexes in the Cretaceous-Paleogene Deccan Traps flood basalt province of India. Thermobarometry based on clinopyroxene-liquid equilibrium suggests that they mostly crystallized beneath the Moho at ~ 15 kbar/1270 °C to ~ 11–12 kbar/1115–1156 °C pressures and temperatures. Primary magma compositions in equilibrium with lherzolite were estimated through reverse fractionation calculations by incrementally adding equilibrium phases to the rocks in olivine:clinopyroxene:spinel:phlogopite = 12:68:20:15 proportions at low temperatures followed by olivine:clinopyroxene:spinel = 12:68:20 proportions at higher temperatures. A comparison of the primary magmas with experimentally generated melts shows that their compositions are consistent with an origin from garnet lherzolite sources with < 1 wt% H2O and CO2. Hornblendite, pyroxenite (except for some Bhuj rocks) and carbonated eclogite are unlikely sources for the Deccan alkalic rocks. The Sarnu-Dandali and Bhuj alkalic rocks and the Murud-Janjira lamprophyres probably originated by < 5% melting of ~ 1.3 times Ti-enriched lherzolitic sources compared to primitive mantle. The primary magmas of the Murud-Janjira basanites calculated through reverse assimilation-fractional crystallization by assimilating lower crustal and mantle xenoliths found in younger lamprophyre dikes of the same area indicate that contamination by the Indian lithosphere was unlikely during their ascent. The basanites evolved by mixing with phonotephritic melts, and they probably originated from a Ti-poor (0.7 times) lherzolite source. The temperature of the melts at the base of the lithosphere was ~ 1325 °C beneath Sarnu-Dandali and ~ 1285 °C beneath Bhuj and Murud-Janjira. |
---|