Polymer-Coated Mesoporous Carbon as Enzyme Platform for Oxidation of Bisphenol A in Organic Solvents

© 2019 American Chemical Society. Bisphenol A (BPA) is not only a widely used chemical but also a toxic pollutant, and its biodegradation in an aqueous environment is hard due to its near insolubility in water. While the enzyme tyrosinase can oxidize BPA in organic solvents, it does so only very slo...

Full description

Bibliographic Details
Main Authors: Wu, Lidong, Ji, Xiang, Kong, Jing
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: American Chemical Society (ACS) 2022
Online Access:https://hdl.handle.net/1721.1/132265.2
Description
Summary:© 2019 American Chemical Society. Bisphenol A (BPA) is not only a widely used chemical but also a toxic pollutant, and its biodegradation in an aqueous environment is hard due to its near insolubility in water. While the enzyme tyrosinase can oxidize BPA in organic solvents, it does so only very slowly. In the present study, we have found that in toluene the catalytic activity of tyrosinase deposited onto coated mesoporous carbon is significantly enhanced when the support is precoated with polyethylenimine. The resultant enzymatically formed o-quinone is both easily recoverable and potentially useful monomer. As a particular example, the o-quinone readily reacts with diamine in toluene to form poly(amino-quinone) polymers, which are suitable for anticorrosion, energy storage, or biosensor applications.