Tsunami: a learned multi-dimensional index for correlated data and skewed workloads

© 2020, VLDB Endowment. All rights reserved. Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional...

Full description

Bibliographic Details
Main Authors: Ding, Jialin, Nathan, Vikram, Alizadeh, Mohammad, Kraska, Tim
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:English
Published: VLDB Endowment 2021
Online Access:https://hdl.handle.net/1721.1/132295
Description
Summary:© 2020, VLDB Endowment. All rights reserved. Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional indexes, and, for high selectivity queries, secondary indexes. However, these schemes are hard to tune and their performance is inconsistent. Recent work on learned multi-dimensional indexes has introduced the idea of automatically optimizing an index for a particular dataset and workload. However, the performance of that work suffers in the presence of correlated data and skewed query workloads, both of which are common in real applications. In this paper, we introduce Tsunami, which addresses these limitations to achieve up to 6× faster query performance and up to 8× smaller index size than existing learned multi-dimensional indexes, in addition to up to 11× faster query performance and 170× smaller index size than optimally-tuned traditional indexes.