Redshift Evolution of the Fundamental Plane Relation in the IllustrisTNG Simulation

© 2020 The Author(s). We investigate the Fundamental Plane (FP) evolution of early-type galaxies in the IllustrisTNG- 100 simulation (TNG100) from redshift z = 0 to z = 2. We find that a tight plane relation already exists as early as z = 2. Its scatter stays as low as σ0.08 dex across this redshift...

Full description

Bibliographic Details
Main Authors: Lu, Shengdong, Xu, Dandan, Wang, Yunchong, Mao, Shude, Ge, Junqiang, Springel, Volker, Wang, Yuan, Vogelsberger, Mark, Naiman, Jill, Hernquist, Lars
Other Authors: MIT Kavli Institute for Astrophysics and Space Research
Format: Article
Language:English
Published: Oxford University Press (OUP) 2022
Online Access:https://hdl.handle.net/1721.1/132569.2
Description
Summary:© 2020 The Author(s). We investigate the Fundamental Plane (FP) evolution of early-type galaxies in the IllustrisTNG- 100 simulation (TNG100) from redshift z = 0 to z = 2. We find that a tight plane relation already exists as early as z = 2. Its scatter stays as low as σ0.08 dex across this redshift range. Both slope parameters b and c (where R ∝ σbIc with R, σ, and I being the typical size, velocity dispersion, and surface brightness) of the plane evolve mildly since z = 2, roughly consistent with observations. The FP residual Res (≡ a + b log σ + c log I - logR, where a is the zero-point of the FP) is found to strongly correlate with stellar age, indicating that stellar age can be used as a crucial fourth parameter of the FP. However, we find that 4c + b + 2 = δ, where δ σ 0.8 for FPs in TNG, rather than zero as is typically inferred from observations. This implies that a tight power-law relation between the dynamical mass-to-light ratio Mdyn/L and the dynamical mass Mdyn (where Mdyn ≡ 5σ2R/G, with G being the gravitational constant) is not present in the TNG100 simulation. Recovering such a relation requires proper mixing between dark matter and baryons, as well as star formation occurring with correct efficiencies at the right mass scales. This represents a powerful constraint on the numerical models, which has to be satisfied in future hydrodynamical simulations.