Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses

Reverse osmosis is the most widely used desalination technology for treating irrigation water. Reverse osmosis removes both monovalent ions detrimental to crops and divalent ions beneficial for crops . Fertilizer must then be added to the desalinated water to reintroduce these nutrients. Unlike rev...

Full description

Bibliographic Details
Main Authors: Ahdab, Yvana D, Schücking, Georg, Rehman, Danyal, Lienhard, John H
Other Authors: Rohsenow Kendall Heat Transfer Laboratory (Massachusetts Institute of Technology)
Format: Article
Published: Elsevier BV 2021
Online Access:https://hdl.handle.net/1721.1/133046
_version_ 1811078530013855744
author Ahdab, Yvana D
Schücking, Georg
Rehman, Danyal
Lienhard, John H
author2 Rohsenow Kendall Heat Transfer Laboratory (Massachusetts Institute of Technology)
author_facet Rohsenow Kendall Heat Transfer Laboratory (Massachusetts Institute of Technology)
Ahdab, Yvana D
Schücking, Georg
Rehman, Danyal
Lienhard, John H
author_sort Ahdab, Yvana D
collection MIT
description Reverse osmosis is the most widely used desalination technology for treating irrigation water. Reverse osmosis removes both monovalent ions detrimental to crops and divalent ions beneficial for crops . Fertilizer must then be added to the desalinated water to reintroduce these nutrients. Unlike reverse osmosis, monovalent selective electrodialysis selectively removes monovalent ions while retaining divalent ions in the desalinated water. This paper investigates the monovalent selectivity and cost effectiveness of the widely-used Neosepta and new Fujifilm monovalent selective electrodialysis membranes in treating seawater for irrigation. Membrane selectivity, limiting current, and resistance are experimentally characterized. These system parameters are inputs to the developed cost model, which determines fertilizer and water savings, as well as operating and capital costs, relative to reverse osmosis; the primary operating cost difference stems from reverse osmosis’s significantly lower energy consumption. Given prices of commercially available membranes, monovalent selective electrodialysis costs an average of 30% more than reverse osmosis. At the projected sales price of Fujifilm membranes, which are still under development, monovalent selective electrodialysis costs an average of 10% more than reverse osmosis; if electricity costs are less than 0.08 $/kWh, monovalent selective electrodialysis is on par with reverse osmosis. Regardless of membrane price and electricity cost, solar-powered desalination is only economical if photovoltaic capital costs are significantly reduced to 0.10–0.20 $/kWh. When monovalent selective electrodialysis exceeds reverse osmosis cost, the financial requirements for competitive monovalent selective electrodialysis (e.g., energy consumption, electricity cost, energy source, membrane cost) are evaluated.
first_indexed 2024-09-23T11:01:38Z
format Article
id mit-1721.1/133046
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:01:38Z
publishDate 2021
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1330462022-10-01T00:37:44Z Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses Ahdab, Yvana D Schücking, Georg Rehman, Danyal Lienhard, John H Rohsenow Kendall Heat Transfer Laboratory (Massachusetts Institute of Technology) Reverse osmosis is the most widely used desalination technology for treating irrigation water. Reverse osmosis removes both monovalent ions detrimental to crops and divalent ions beneficial for crops . Fertilizer must then be added to the desalinated water to reintroduce these nutrients. Unlike reverse osmosis, monovalent selective electrodialysis selectively removes monovalent ions while retaining divalent ions in the desalinated water. This paper investigates the monovalent selectivity and cost effectiveness of the widely-used Neosepta and new Fujifilm monovalent selective electrodialysis membranes in treating seawater for irrigation. Membrane selectivity, limiting current, and resistance are experimentally characterized. These system parameters are inputs to the developed cost model, which determines fertilizer and water savings, as well as operating and capital costs, relative to reverse osmosis; the primary operating cost difference stems from reverse osmosis’s significantly lower energy consumption. Given prices of commercially available membranes, monovalent selective electrodialysis costs an average of 30% more than reverse osmosis. At the projected sales price of Fujifilm membranes, which are still under development, monovalent selective electrodialysis costs an average of 10% more than reverse osmosis; if electricity costs are less than 0.08 $/kWh, monovalent selective electrodialysis is on par with reverse osmosis. Regardless of membrane price and electricity cost, solar-powered desalination is only economical if photovoltaic capital costs are significantly reduced to 0.10–0.20 $/kWh. When monovalent selective electrodialysis exceeds reverse osmosis cost, the financial requirements for competitive monovalent selective electrodialysis (e.g., energy consumption, electricity cost, energy source, membrane cost) are evaluated. 2021-10-19T15:18:32Z 2021-10-19T15:18:32Z 2021-11 2021-06 Article http://purl.org/eprint/type/JournalArticle 0306-2619 https://hdl.handle.net/1721.1/133046 Ahdab, Yvana D et al. "Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses." Applied Energy 301 (November 2021): 117425. © 2021 Elsevier Ltd http://dx.doi.org/10.1016/j.apenergy.2021.117425 Applied Energy Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Elsevier BV Prof. Lienhard
spellingShingle Ahdab, Yvana D
Schücking, Georg
Rehman, Danyal
Lienhard, John H
Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title_full Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title_fullStr Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title_full_unstemmed Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title_short Cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
title_sort cost effectiveness of conventionally and solar powered monovalent selective electrodialysis for seawater desalination in greenhouses
url https://hdl.handle.net/1721.1/133046
work_keys_str_mv AT ahdabyvanad costeffectivenessofconventionallyandsolarpoweredmonovalentselectiveelectrodialysisforseawaterdesalinationingreenhouses
AT schuckinggeorg costeffectivenessofconventionallyandsolarpoweredmonovalentselectiveelectrodialysisforseawaterdesalinationingreenhouses
AT rehmandanyal costeffectivenessofconventionallyandsolarpoweredmonovalentselectiveelectrodialysisforseawaterdesalinationingreenhouses
AT lienhardjohnh costeffectivenessofconventionallyandsolarpoweredmonovalentselectiveelectrodialysisforseawaterdesalinationingreenhouses