Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1

© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. Approximately 20–30% of human lung adenocarcinomas (LUADs) harbor mutations in Kelch-like ECH-associated protein 1 (KEAP1) that hyperactivate the nuclear factor, erythroid 2-like 2 (NFE2L2) antioxidant program. We previo...

Full description

Bibliographic Details
Main Authors: Romero, Rodrigo, Sánchez-Rivera, Francisco J, Westcott, Peter MK, Mercer, Kim L, Bhutkar, Arjun, Muir, Alexander, González Robles, Tania J, Lamboy Rodríguez, Swanny, Liao, Laura Z, Ng, Sheng Rong, Li, Leanne, Colón, Caterina I, Naranjo, Santiago, Beytagh, Mary Clare, Lewis, Caroline A, Hsu, Peggy P, Bronson, Roderick T, Vander Heiden, Matthew G, Jacks, Tyler
Other Authors: Koch Institute for Integrative Cancer Research at MIT
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2021
Online Access:https://hdl.handle.net/1721.1/133110
Description
Summary:© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. Approximately 20–30% of human lung adenocarcinomas (LUADs) harbor mutations in Kelch-like ECH-associated protein 1 (KEAP1) that hyperactivate the nuclear factor, erythroid 2-like 2 (NFE2L2) antioxidant program. We previously showed that Kras-driven Keap1-mutant LUAD is highly aggressive and dependent on glutaminolysis. Here we performed a druggable genome CRISPR screen and uncovered a Keap1-mutant-specific dependency on solute carrier family 33 member 1 (Slc33a1), as well as several functionally related genes associated with the unfolded protein response. Genetic and biochemical experiments using mouse and human Keap1-mutant tumor lines, as well as preclinical genetically engineered mouse models, validate Slc33a1 as a robust Keap1-mutant-specific dependency. Furthermore, unbiased genome-wide CRISPR screening identified additional genes related to Slc33a1 dependency. Overall, our study provides a rationale for stratification of patients harboring KEAP1-mutant or NRF2-hyperactivated tumors as likely responders to targeted SLC33A1 inhibition and underscores the value of integrating functional genetic approaches with genetically engineered mouse models to identify and validate genotype-specific therapeutic targets.