Crystallographic Characterization of the Carbonylated A-Cluster in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase

Copyright © 2020 American Chemical Society. The Wood-Ljungdahl pathway allows for autotrophic bacterial growth on carbon dioxide, with the last step in acetyl-CoA synthesis catalyzed by the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). ACS uses a complex Ni-Fe-S m...

Full description

Bibliographic Details
Main Authors: Cohen, Steven E, Can, Mehmet, Wittenborn, Elizabeth C, Hendrickson, Rachel A, Ragsdale, Stephen W, Drennan, Catherine L
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: American Chemical Society (ACS) 2021
Online Access:https://hdl.handle.net/1721.1/133251
Description
Summary:Copyright © 2020 American Chemical Society. The Wood-Ljungdahl pathway allows for autotrophic bacterial growth on carbon dioxide, with the last step in acetyl-CoA synthesis catalyzed by the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). ACS uses a complex Ni-Fe-S metallocluster termed the A-cluster to assemble acetyl-CoA from carbon monoxide, a methyl moiety and coenzyme A. Here, we report the crystal structure of CODH/ACS from Moorella thermoacetica with substrate carbon monoxide bound at the A-cluster, a state previously uncharacterized by crystallography. Direct structural characterization of this state highlights the role of second sphere residues and conformational dynamics in acetyl-CoA assembly, the biological equivalent of the Monsanto process.