Reduction of Dispersion in Ultrasonically-Enhanced Micropacked Beds

© 2017 American Chemical Society. Channeling of gas can reduce mass transfer performance in multiphase micropacked-bed reactors. Viscous and capillary forces cause this undesired and often unpredictable phenomenon in systems with catalyst particle sizes of hundreds of micrometers. In this work, we a...

Full description

Bibliographic Details
Main Authors: Navarro-Brull, Francisco J, Teixeira, Andrew R, Zhang, Jisong, Gómez, Roberto, Jensen, Klavs F
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2021
Online Access:https://hdl.handle.net/1721.1/133316
Description
Summary:© 2017 American Chemical Society. Channeling of gas can reduce mass transfer performance in multiphase micropacked-bed reactors. Viscous and capillary forces cause this undesired and often unpredictable phenomenon in systems with catalyst particle sizes of hundreds of micrometers. In this work, we acoustically modify flow in a micropacked-bed reactor to reduce gas channeling by applying high-power sonication at low ultrasonic frequencies (∼40 kHz). Experimental residence time distributions reveal two orders of magnitude reduction in dispersion with ultrasound, allowing for nearly plug-flow behavior at high flow rates in the bed. Sonication appears to partially fluidize the packed-bed under pressurized cocurrent two-phase flow, effectively improving dispersion characteristics.