Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response
Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause pe...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media LLC
2021
|
Online Access: | https://hdl.handle.net/1721.1/133660 |
_version_ | 1826205884121874432 |
---|---|
author | Ahmed, Aslaa Bakovic, Allison Risner, Kenneth Kortchak, Stephanie Der Torossian Torres, Marcelo de la Fuente-Nunez, Cesar Lu, Timothy Bhalla, Nishank Narayanan, Aarthi |
author_facet | Ahmed, Aslaa Bakovic, Allison Risner, Kenneth Kortchak, Stephanie Der Torossian Torres, Marcelo de la Fuente-Nunez, Cesar Lu, Timothy Bhalla, Nishank Narayanan, Aarthi |
author_sort | Ahmed, Aslaa |
collection | MIT |
description | Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1β, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection. |
first_indexed | 2024-09-23T13:20:34Z |
format | Article |
id | mit-1721.1/133660 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T13:20:34Z |
publishDate | 2021 |
publisher | Springer Science and Business Media LLC |
record_format | dspace |
spelling | mit-1721.1/1336602021-10-28T03:53:32Z Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response Ahmed, Aslaa Bakovic, Allison Risner, Kenneth Kortchak, Stephanie Der Torossian Torres, Marcelo de la Fuente-Nunez, Cesar Lu, Timothy Bhalla, Nishank Narayanan, Aarthi Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1β, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection. 2021-10-27T19:54:02Z 2021-10-27T19:54:02Z 2020 2021-01-28T19:45:39Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/133660 en 10.1038/s41598-020-77990-3 Scientific Reports Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/ application/pdf Springer Science and Business Media LLC Scientific Reports |
spellingShingle | Ahmed, Aslaa Bakovic, Allison Risner, Kenneth Kortchak, Stephanie Der Torossian Torres, Marcelo de la Fuente-Nunez, Cesar Lu, Timothy Bhalla, Nishank Narayanan, Aarthi Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title | Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title_full | Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title_fullStr | Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title_full_unstemmed | Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title_short | Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response |
title_sort | synthetic host defense peptides inhibit venezuelan equine encephalitis virus replication and the associated inflammatory response |
url | https://hdl.handle.net/1721.1/133660 |
work_keys_str_mv | AT ahmedaslaa synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT bakovicallison synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT risnerkenneth synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT kortchakstephanie synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT dertorossiantorresmarcelo synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT delafuentenunezcesar synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT lutimothy synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT bhallanishank synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse AT narayananaarthi synthetichostdefensepeptidesinhibitvenezuelanequineencephalitisvirusreplicationandtheassociatedinflammatoryresponse |