X-ray crystallography–based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate

© 2019 Chen et al. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) into 1-deoxy-D-xylulose 5-phos-phate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attrac...

Full description

Bibliographic Details
Main Authors: Chen, Percival Yang-Ting, DeColli, Alicia A, Freel Meyers, Caren L, Drennan, Catherine L
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: Elsevier BV 2021
Online Access:https://hdl.handle.net/1721.1/134151
Description
Summary:© 2019 Chen et al. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) into 1-deoxy-D-xylulose 5-phos-phate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters KmD-GAP AND Kmpyruvate (54 3 and 11 1 M, respectively) and comparable catalytic activity (kcat 45 2 min1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-res-olution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.