Individual pebble temperature peaking factor due to local pebble arrangement in a pebble bed reactor core

Scientists at the German AVR pebble bed nuclear reactor discovered that the surface temperature of some of the pebbles in the AVR core were at least 200 K higher than previously predicted by reactor core analysis calculations. The goal of this research paper is to determine whether a similar unexpec...

Full description

Bibliographic Details
Main Authors: Sobes, Vladimir, Forget, Benoit, Kadak, Andrew
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Article
Language:English
Published: Elsevier BV 2021
Online Access:https://hdl.handle.net/1721.1/134234
Description
Summary:Scientists at the German AVR pebble bed nuclear reactor discovered that the surface temperature of some of the pebbles in the AVR core were at least 200 K higher than previously predicted by reactor core analysis calculations. The goal of this research paper is to determine whether a similar unexpected fuel temperature increase of 200 K can be attributed solely or mostly to elevated power production resulting from exceptional configurations of pebbles. If it were caused by excessive pebble-to-pebble local power peaking, there could be implications for the need for core physics monitoring which is not now being considered for pebble bed reactors. The PBMR-400 core design was used as the basis for evaluating pebble bed reactor safety. Through exhaustive Monte Carlo modeling of a PBMR-400 pebble environment, no simple pebble-to-pebble burn-up conditions were found to cause a sufficiently high local power peaking to lead to a 200 K temperature increase. Simple thermal hydraulics analysis was performed which showed that a significant core coolant flow anomalies such as higher than expected core bypass flows, local pebble flow variation or even local flow blockage would be needed to account for such an increase in fuel temperature. The identified worst case scenarios are presented and discussed in detail. The conclusion of this work is that the stochastic nature of the pebble bed cannot lead to highly elevated fuel temperatures but rather local or core-wide coolant flow reductions are the likely cause. © 2010 Elsevier B.V. All rights reserved.