Injectable hyaluronic acid-dextran hydrogels and effects of implantation in ferret vocal fold

Injectable hydrogels may potentially be used for augmentation/regeneration of the lamina propria of vocal fold tissue. In this study, hyaluronic acid (HA) and dextran were chemically modified and subsequently crosslinked via formation of hydrazone bonds in phosphate buffer. Swelling ratios, degradat...

Full description

Bibliographic Details
Main Authors: Luo, Ying, Kobler, James B, Heaton, James T, Jia, Xinqiao, Zeitels, Steven M, Langer, Robert
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:English
Published: Wiley 2021
Online Access:https://hdl.handle.net/1721.1/134536
Description
Summary:Injectable hydrogels may potentially be used for augmentation/regeneration of the lamina propria of vocal fold tissue. In this study, hyaluronic acid (HA) and dextran were chemically modified and subsequently crosslinked via formation of hydrazone bonds in phosphate buffer. Swelling ratios, degradation, and compressive moduli of the resulting hydrogels were investigated. It was found that the properties of HA-dextran hydrogels were variable and the trend of variation could be correlated with the hydrogel composition. The biocompatibility of three injectable HA-dextran hydrogels with different crosslinking density was assessed in the vocal fold region using a ferret model. It was found that HA-dextran hydrogels implanted for three weeks stimulated mild foreignbody reactions. Distinct tissue-material interactions were also observed for hydrogels made from different formulations: the hydrogel with the lowest crosslinking density was completely degraded in vivo; while material residues were visible for other types of hydrogel injections, with or without cell penetration into the implantation depending on the hydrogel composition. The in vivo results suggest that the HA-dextran hydrogel matrices can be further developed for applications of vocal fold tissue restoration. © 2010 Wiley Periodicals, Inc.