First results from the IllustrisTNG simulations: radio haloes and magnetic fields
© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society We introduce the IllustrisTNG project, a new suite of cosmological magnetohydrodynamical simulations performed with the moving-mesh code AREPO employing an updated Illustris galaxy formation model....
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Oxford University Press (OUP)
2021
|
Online Access: | https://hdl.handle.net/1721.1/134593 |
_version_ | 1826206788551180288 |
---|---|
author | Marinacci, Federico Vogelsberger, Mark Pakmor, Rüdiger Torrey, Paul Springel, Volker Hernquist, Lars Nelson, Dylan Weinberger, Rainer Pillepich, Annalisa Naiman, Jill Genel, Shy |
author2 | MIT Kavli Institute for Astrophysics and Space Research |
author_facet | MIT Kavli Institute for Astrophysics and Space Research Marinacci, Federico Vogelsberger, Mark Pakmor, Rüdiger Torrey, Paul Springel, Volker Hernquist, Lars Nelson, Dylan Weinberger, Rainer Pillepich, Annalisa Naiman, Jill Genel, Shy |
author_sort | Marinacci, Federico |
collection | MIT |
description | © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society We introduce the IllustrisTNG project, a new suite of cosmological magnetohydrodynamical simulations performed with the moving-mesh code AREPO employing an updated Illustris galaxy formation model. Here we focus on the general properties of magnetic fields and the diffuse radio emission in galaxy clusters. Magnetic fields are prevalent in galaxies, and their build-up is closely linked to structure formation. We find that structure formation amplifies the initial seed fields (10 −14 comoving Gauss) to the values observed in low-redshift galaxies (1-10 μG). The magnetic field topology is closely connected to galaxy morphology such that irregular fields are hosted by early-type galaxies, while large-scale, ordered fields are present in disc galaxies. Using two simple models for the energy distribution of relativistic electrons we predict the diffuse radio emission of 280 clusters with a baryonic mass resolution of 1.1 × 10 7 M, and generate mock observations for Very Large Array (VLA), Low-Frequency Array (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP), and Square Kilometre Array (SKA). Our simulated clusters show extended radio emission, whose detectability correlates with their virial mass. We reproduce the observed scaling relations between total radio power and X-ray emission, M 500 , and the Sunyaev-Zel'dovich Y 500 parameter. The radio emission surface brightness profiles of our most massive clusters are in reasonable agreement with VLA measurements of Coma and Perseus. Finally, we discuss the fraction of detected extended radio haloes as a function of virial mass and source count functions for different instruments. Overall our results agree encouragingly well with observations, but a refined analysis requires a more sophisticated treatment of relativistic particles in large-scale galaxy formation simulations. |
first_indexed | 2024-09-23T13:38:21Z |
format | Article |
id | mit-1721.1/134593 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T13:38:21Z |
publishDate | 2021 |
publisher | Oxford University Press (OUP) |
record_format | dspace |
spelling | mit-1721.1/1345932023-12-22T19:43:45Z First results from the IllustrisTNG simulations: radio haloes and magnetic fields Marinacci, Federico Vogelsberger, Mark Pakmor, Rüdiger Torrey, Paul Springel, Volker Hernquist, Lars Nelson, Dylan Weinberger, Rainer Pillepich, Annalisa Naiman, Jill Genel, Shy MIT Kavli Institute for Astrophysics and Space Research © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society We introduce the IllustrisTNG project, a new suite of cosmological magnetohydrodynamical simulations performed with the moving-mesh code AREPO employing an updated Illustris galaxy formation model. Here we focus on the general properties of magnetic fields and the diffuse radio emission in galaxy clusters. Magnetic fields are prevalent in galaxies, and their build-up is closely linked to structure formation. We find that structure formation amplifies the initial seed fields (10 −14 comoving Gauss) to the values observed in low-redshift galaxies (1-10 μG). The magnetic field topology is closely connected to galaxy morphology such that irregular fields are hosted by early-type galaxies, while large-scale, ordered fields are present in disc galaxies. Using two simple models for the energy distribution of relativistic electrons we predict the diffuse radio emission of 280 clusters with a baryonic mass resolution of 1.1 × 10 7 M, and generate mock observations for Very Large Array (VLA), Low-Frequency Array (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP), and Square Kilometre Array (SKA). Our simulated clusters show extended radio emission, whose detectability correlates with their virial mass. We reproduce the observed scaling relations between total radio power and X-ray emission, M 500 , and the Sunyaev-Zel'dovich Y 500 parameter. The radio emission surface brightness profiles of our most massive clusters are in reasonable agreement with VLA measurements of Coma and Perseus. Finally, we discuss the fraction of detected extended radio haloes as a function of virial mass and source count functions for different instruments. Overall our results agree encouragingly well with observations, but a refined analysis requires a more sophisticated treatment of relativistic particles in large-scale galaxy formation simulations. 2021-10-27T20:05:41Z 2021-10-27T20:05:41Z 2018 2019-06-11T12:29:36Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/134593 en 10.1093/MNRAS/STY2206 Monthly Notices of the Royal Astronomical Society Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Oxford University Press (OUP) arXiv |
spellingShingle | Marinacci, Federico Vogelsberger, Mark Pakmor, Rüdiger Torrey, Paul Springel, Volker Hernquist, Lars Nelson, Dylan Weinberger, Rainer Pillepich, Annalisa Naiman, Jill Genel, Shy First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title | First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title_full | First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title_fullStr | First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title_full_unstemmed | First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title_short | First results from the IllustrisTNG simulations: radio haloes and magnetic fields |
title_sort | first results from the illustristng simulations radio haloes and magnetic fields |
url | https://hdl.handle.net/1721.1/134593 |
work_keys_str_mv | AT marinaccifederico firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT vogelsbergermark firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT pakmorrudiger firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT torreypaul firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT springelvolker firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT hernquistlars firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT nelsondylan firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT weinbergerrainer firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT pillepichannalisa firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT naimanjill firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields AT genelshy firstresultsfromtheillustristngsimulationsradiohaloesandmagneticfields |