Gradient-domain path tracing

We introduce gradient-domain rendering for Monte Carlo image synthesis. While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Kettunen, Markus, Manzi, Marco, Aittala, Miika, Lehtinen, Jaakko, Durand, Frédo, Zwicker, Matthias
Այլ հեղինակներ: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Ձևաչափ: Հոդված
Լեզու:English
Հրապարակվել է: Association for Computing Machinery (ACM) 2021
Առցանց հասանելիություն:https://hdl.handle.net/1721.1/134651
_version_ 1826188867763437568
author Kettunen, Markus
Manzi, Marco
Aittala, Miika
Lehtinen, Jaakko
Durand, Frédo
Zwicker, Matthias
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Kettunen, Markus
Manzi, Marco
Aittala, Miika
Lehtinen, Jaakko
Durand, Frédo
Zwicker, Matthias
author_sort Kettunen, Markus
collection MIT
description We introduce gradient-domain rendering for Monte Carlo image synthesis. While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results. Copyright is held by the owner/author(s). Publication rights licensed to ACM.
first_indexed 2024-09-23T08:06:16Z
format Article
id mit-1721.1/134651
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T08:06:16Z
publishDate 2021
publisher Association for Computing Machinery (ACM)
record_format dspace
spelling mit-1721.1/1346512023-09-27T20:15:59Z Gradient-domain path tracing Kettunen, Markus Manzi, Marco Aittala, Miika Lehtinen, Jaakko Durand, Frédo Zwicker, Matthias Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory We introduce gradient-domain rendering for Monte Carlo image synthesis. While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results. Copyright is held by the owner/author(s). Publication rights licensed to ACM. 2021-10-27T20:06:00Z 2021-10-27T20:06:00Z 2015 2019-05-29T12:17:32Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/134651 Kettunen, Markus, et al. "Gradient-Domain Path Tracing." Acm Transactions on Graphics 34 4 (2015). en 10.1145/2766997 ACM Transactions on Graphics Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Association for Computing Machinery (ACM) Other repository
spellingShingle Kettunen, Markus
Manzi, Marco
Aittala, Miika
Lehtinen, Jaakko
Durand, Frédo
Zwicker, Matthias
Gradient-domain path tracing
title Gradient-domain path tracing
title_full Gradient-domain path tracing
title_fullStr Gradient-domain path tracing
title_full_unstemmed Gradient-domain path tracing
title_short Gradient-domain path tracing
title_sort gradient domain path tracing
url https://hdl.handle.net/1721.1/134651
work_keys_str_mv AT kettunenmarkus gradientdomainpathtracing
AT manzimarco gradientdomainpathtracing
AT aittalamiika gradientdomainpathtracing
AT lehtinenjaakko gradientdomainpathtracing
AT durandfredo gradientdomainpathtracing
AT zwickermatthias gradientdomainpathtracing