POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES

<jats:p>We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1...

Full description

Bibliographic Details
Main Authors: DU, XIUMIN, GUTH, LARRY, LI, XIAOCHUN, ZHANG, RUIXIANG
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Cambridge University Press (CUP) 2021
Online Access:https://hdl.handle.net/1721.1/134734
_version_ 1811091798740697088
author DU, XIUMIN
GUTH, LARRY
LI, XIAOCHUN
ZHANG, RUIXIANG
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
DU, XIUMIN
GUTH, LARRY
LI, XIAOCHUN
ZHANG, RUIXIANG
author_sort DU, XIUMIN
collection MIT
description <jats:p>We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline1" /><jats:tex-math>$n\geqslant 3$</jats:tex-math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline2" /><jats:tex-math>$\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula><jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline3" /><jats:tex-math>$=f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula> almost everywhere with respect to Lebesgue measure for all <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline4" /><jats:tex-math>$f\in H^{s}(\mathbb{R}^{n})$</jats:tex-math></jats:alternatives></jats:inline-formula> provided that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline5" /><jats:tex-math>$s&gt;(n+1)/2(n+2)$</jats:tex-math></jats:alternatives></jats:inline-formula>. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.</jats:p>
first_indexed 2024-09-23T15:08:12Z
format Article
id mit-1721.1/134734
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T15:08:12Z
publishDate 2021
publisher Cambridge University Press (CUP)
record_format dspace
spelling mit-1721.1/1347342023-03-15T19:28:38Z POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES DU, XIUMIN GUTH, LARRY LI, XIAOCHUN ZHANG, RUIXIANG Massachusetts Institute of Technology. Department of Mathematics <jats:p>We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline1" /><jats:tex-math>$n\geqslant 3$</jats:tex-math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline2" /><jats:tex-math>$\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula><jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline3" /><jats:tex-math>$=f(x)$</jats:tex-math></jats:alternatives></jats:inline-formula> almost everywhere with respect to Lebesgue measure for all <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline4" /><jats:tex-math>$f\in H^{s}(\mathbb{R}^{n})$</jats:tex-math></jats:alternatives></jats:inline-formula> provided that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S2050509418000117_inline5" /><jats:tex-math>$s&gt;(n+1)/2(n+2)$</jats:tex-math></jats:alternatives></jats:inline-formula>. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.</jats:p> 2021-10-27T20:08:54Z 2021-10-27T20:08:54Z 2018 2019-11-13T16:38:13Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/134734 en 10.1017/FMS.2018.11 Forum of Mathematics, Sigma Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Cambridge University Press (CUP) Cambridge University Press
spellingShingle DU, XIUMIN
GUTH, LARRY
LI, XIAOCHUN
ZHANG, RUIXIANG
POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title_full POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title_fullStr POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title_full_unstemmed POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title_short POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
title_sort pointwise convergence of schrodinger solutions and multilinear refined strichartz estimates
url https://hdl.handle.net/1721.1/134734
work_keys_str_mv AT duxiumin pointwiseconvergenceofschrodingersolutionsandmultilinearrefinedstrichartzestimates
AT guthlarry pointwiseconvergenceofschrodingersolutionsandmultilinearrefinedstrichartzestimates
AT lixiaochun pointwiseconvergenceofschrodingersolutionsandmultilinearrefinedstrichartzestimates
AT zhangruixiang pointwiseconvergenceofschrodingersolutionsandmultilinearrefinedstrichartzestimates