Diffusion Maps Kalman Filter for a Class of Systems with Gradient Flows
© 1991-2012 IEEE. In this paper, we propose a non-parametric method for state estimation of high-dimensional nonlinear stochastic dynamical systems, which evolve according to gradient flows with isotropic diffusion. We combine diffusion maps, a manifold learning technique, with a linear Kalman filte...
Main Authors: | Shnitzer, Tal, Talmon, Ronen, Slotine, Jean-Jacques |
---|---|
其他作者: | Massachusetts Institute of Technology. Nonlinear Systems Laboratory |
格式: | 文件 |
语言: | English |
出版: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
在线阅读: | https://hdl.handle.net/1721.1/135213 |
相似书籍
-
Manifold Learning With Contracting Observers for Data-Driven Time-Series Analysis
由: Shnitzer, Tal, et al.
出版: (2021) -
Manifold Learning With Contracting Observers for Data-Driven Time-Series Analysis
由: Shnitzer, Tal, et al.
出版: (2022) -
A Contraction Theory-Based Analysis of the Stability of the Deterministic Extended Kalman Filter
由: Bonnabel, Silvere, et al.
出版: (2015) -
Diffusion Kalman filtering based on covariance intersection
由: Hu, Jinwen, et al.
出版: (2013) -
Smartphone orientation estimation algorithm combining Kalman filter with gradient descent
由: Yean, Seanglidet, et al.
出版: (2020)