The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism

<jats:title>Abstract</jats:title> <jats:p>We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to{...

Full description

Bibliographic Details
Main Authors: Poonen, Bjorn, Slavov, Kaloyan
Format: Article
Language:English
Published: Oxford University Press (OUP) 2021
Online Access:https://hdl.handle.net/1721.1/135257
_version_ 1811078058632806400
author Poonen, Bjorn
Slavov, Kaloyan
author_facet Poonen, Bjorn
Slavov, Kaloyan
author_sort Poonen, Bjorn
collection MIT
description <jats:title>Abstract</jats:title> <jats:p>We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to{\mathbb{P}}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\phi $ all have the same dimension, the locus of hyperplanes $H$ such that $\phi ^{-1} H$ is not geometrically irreducible has dimension at most ${\operatorname{codim}}\ \phi (X)+1$. We give an application to monodromy groups above hyperplane sections.</jats:p>
first_indexed 2024-09-23T10:52:43Z
format Article
id mit-1721.1/135257
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T10:52:43Z
publishDate 2021
publisher Oxford University Press (OUP)
record_format dspace
spelling mit-1721.1/1352572021-10-28T04:25:12Z The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism Poonen, Bjorn Slavov, Kaloyan <jats:title>Abstract</jats:title> <jats:p>We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to{\mathbb{P}}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\phi $ all have the same dimension, the locus of hyperplanes $H$ such that $\phi ^{-1} H$ is not geometrically irreducible has dimension at most ${\operatorname{codim}}\ \phi (X)+1$. We give an application to monodromy groups above hyperplane sections.</jats:p> 2021-10-27T20:22:40Z 2021-10-27T20:22:40Z 2020 2021-05-25T18:52:39Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/135257 en 10.1093/IMRN/RNAA182 International Mathematics Research Notices Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Oxford University Press (OUP) MIT web domain
spellingShingle Poonen, Bjorn
Slavov, Kaloyan
The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title_full The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title_fullStr The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title_full_unstemmed The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title_short The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism
title_sort exceptional locus in the bertini irreducibility theorem for a morphism
url https://hdl.handle.net/1721.1/135257
work_keys_str_mv AT poonenbjorn theexceptionallocusinthebertiniirreducibilitytheoremforamorphism
AT slavovkaloyan theexceptionallocusinthebertiniirreducibilitytheoremforamorphism
AT poonenbjorn exceptionallocusinthebertiniirreducibilitytheoremforamorphism
AT slavovkaloyan exceptionallocusinthebertiniirreducibilitytheoremforamorphism